scholarly journals A GCM comparison of Plio–Pleistocene interglacial–glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

2014 ◽  
Vol 10 (4) ◽  
pp. 3127-3161 ◽  
Author(s):  
A. J. Coletti ◽  
R. M. DeConto ◽  
J. Brigham-Grette ◽  
M. Melles

Abstract. Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and cooling can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea ice cover causing albedo-enhanced feedback.

2015 ◽  
Vol 11 (7) ◽  
pp. 979-989 ◽  
Author(s):  
A. J. Coletti ◽  
R. M. DeConto ◽  
J. Brigham-Grette ◽  
M. Melles

Abstract. Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate–vegetation–land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.


2020 ◽  
Author(s):  
Michael Meredith ◽  
Martin Sommerkorn ◽  
Sandra Cassotta ◽  
Chris Derksen ◽  
Alexey Ekaykin ◽  
...  

<p>Climate change in the polar regions exerts a profound influence both locally and over all of our planet.  Physical and ecosystem changes influence societies and economies, via factors that include food provision, transport and access to non-renewable resources.  Sea level, global climate and potentially mid-latitude weather are influenced by the changing polar regions, through coupled feedback processes, sea ice changes and the melting of snow and land-based ice sheets and glaciers.</p><p>Reflecting this importance, the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) features a chapter highlighting past, ongoing and future change in the polar regions, the impacts of these changes, and the possible options for response.  The role of the polar oceans, both in determining the changes and impacts in the polar regions and in structuring the global influence, is an important component of this chapter.</p><p>With emphasis on the Southern Ocean and through comparison with the Arctic, this talk will outline key findings from the polar regions chapter of SROCC. It will synthesise the latest information on the rates, patterns and causes of changes in sea ice, ocean circulation and properties. It will assess cryospheric driving of ocean change from ice sheets, ice shelves and glaciers, and the role of the oceans in determining the past and future evolutions of polar land-based ice. The implications of these changes for climate, ecosystems, sea level and the global system will be outlined.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


2021 ◽  
Author(s):  
Sara Harðardóttir ◽  
Connie Lovejoy ◽  
Marit-Solveig Seidenkrantz ◽  
Sofia Ribeiro

<p>Arctic sea ice is declining at an unprecedented pace as the Arctic Ocean heads towards ice-free summers within the next few decades. Because of the role of sea ice in the Earth System such as ocean circulation and ecosystem functioning, reconstructing its past variability is of great importance providing insight into past climate patterns and future climate scenarios. Today, much of our knowledge of past sea-ice variability derives from a relatively few microfossil and biogeochemical tracers, which have limitations, such as preservation biases and low taxonomic resolution. Marine sedimentary ancient DNA (marine <em>seda</em>DNA) has the potential to capture more of the arctic marine biodiversity compared to other approaches. However, little is known about how well past communities are represented in marine <em>seda</em>DNA. The transport and fate of DNA derived from sea-ice associated organisms, from surface waters to the seafloor and its eventual incorporation into marine sediment records is poorly understood.  Here, we present results from a study applying a combination of methods to examine modern and ancient DNA to material collected along the Northeast Greenland Shelf. We characterized the vertical export of genetic material by amplicon sequencing the hyper-variable V4 region of the 18S rDNA at three water depths, in surface sediments, and in a dated sediment core.  The amplicon sequencing approach, as currently applied, includes some limitations for quantitative reconstructions of past changes such as primer competition, PCR errors, and variation of gene copy numbers across different taxa. For these reasons we quantified amplicons from a single species, the circum-polar sea ice dinoflagellate <em>Polarella glacialis</em> in the marine <em>seda</em>DNA, using digital droplet PCR. The results will increase our understanding on the taphonomy of DNA in sea ice environments, how sedimentation differs among taxonomic groups, and provide indications to potentially useful marine <em>seda</em>DNA-based proxies for climate and environmental reconstructions.</p>


2018 ◽  
Vol 32 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Sergey Danilov ◽  
Dmitry Sidorenko ◽  
Nikolay Koldunov ◽  
...  

Abstract The freshwater stored in the Arctic Ocean is an important component of the global climate system. Currently the Arctic liquid freshwater content (FWC) has reached a record high since the beginning of the last century. In this study we use numerical simulations to investigate the impact of sea ice decline on the Arctic liquid FWC and its spatial distribution. The global unstructured-mesh ocean general circulation model Finite Element Sea Ice–Ocean Model (FESOM) with 4.5-km horizontal resolution in the Arctic region is applied. The simulations show that sea ice decline increases the FWC by freshening the ocean through sea ice meltwater and modifies upper ocean circulation at the same time. The two effects together significantly increase the freshwater stored in the Amerasian basin and reduce its amount in the Eurasian basin. The salinification of the upper Eurasian basin is mainly caused by the reduction in the proportion of Pacific Water and the increase in that of Atlantic Water (AW). Consequently, the sea ice decline did not significantly contribute to the observed rapid increase in the Arctic total liquid FWC. However, the changes in the Arctic freshwater spatial distribution indicate that the influence of sea ice decline on the ocean environment is remarkable. Sea ice decline increases the amount of Barents Sea branch AW in the upper Arctic Ocean, thus reducing its supply to the deeper Arctic layers. This study suggests that all the dynamical processes sensitive to sea ice decline should be taken into account when understanding and predicting Arctic changes.


Ocean Science ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Céline Heuzé

Abstract. Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.


2022 ◽  
Author(s):  
Qing-Bin Lu

Abstract Time-series observations of global lower stratospheric temperature (GLST), global land surface air temperature (LSAT), global mean surface temperature (GMST), sea ice extent (SIE) and snow cover extent (SCE), together with observations reported in Paper I, combined with theoretical calculations of GLSTs and GMSTs, have provided strong evidence that ozone depletion and global climate changes are dominantly caused by human-made halogen-containing ozone-depleting substances (ODSs) and greenhouse gases (GHGs) respectively. Both GLST and SCE have become constant since the mid-1990s and GMST/LSAT has reached a peak since the mid-2000s, while regional continued warmings at the Arctic coasts (particularly Russia and Alaska) in winter and spring and at some areas of Antarctica are observed and can be well explained by a sea-ice-loss warming amplification mechanism. The calculated GMSTs by the parameter-free warming theory of halogenated GHGs show an excellent agreement with the observed GMSTs after the natural El Niño southern oscillation (ENSO) and volcanic effects are removed. These results provide a convincing mechanism of global climate change and will make profound changes in our understanding of atmospheric processes. This study also emphasizes the critical importance of continued international efforts in phasing out all anthropogenic halogenated ODSs and GHGs.


2019 ◽  
Author(s):  
Fernanda Casagrande ◽  
Ronald Buss de Souza ◽  
Paulo Nobre ◽  
Andre Lanfer Marquez

Abstract. The numerical climate simulation from Brazilian Earth System Model (BESM) are used here to investigate the response of Polar Regions to a forced increase of CO2 (Abrupt-4xCO2) and compared with Coupled Model Intercomparison Project 5 (CMIP5) simulations. Polar Regions are described as the most climatically sensitive areas of the globe, with an enhanced warming occurring during the cold seasons. The asymmetry between the two poles is related to the thermal inertia and the coupled ocean atmosphere processes involved. While in the northern high latitudes the amplified warming signal is associated to a positive snow and sea ice albedo feedback, for southern high latitudes the warming is related to a combination of ozone depletion and changes in the winds pattern. The numerical experiments conducted here demonstrated a very clear evidence of seasonality in the polar amplification response. In winter, for the northern high latitudes (southern high latitudes) the range of simulated polar warming varied from 15 K to 30 K (2.6 K to 10 K). In summer, for northern high latitudes (southern high latitudes) the simulated warming varies from 3 K to 15 K (3 K to 7 K). The vertical profiles of air temperature indicated stronger warming at surface, particularly for the Arctic region, suggesting that the albedo-sea ice feedback overlaps with the warming caused by meridional transport of heat in atmosphere. The latitude of the maximum warming was inversely correlated with changes in the sea ice within the model’s control run. Three climate models were identified as having high polar amplification for cold season in both poles: MIROC-ESM, BESM-OA V2.5 and GFDL-ESM2M. We suggest that the large BIAS found between models can be related to the differences in each model to represent the feedback process and also as a consequence of the distinct sea ice initial conditions of each model. The polar amplification phenomenon has been observed previously and is expected to become stronger in coming decades. The consequences for the atmospheric and ocean circulation are still subject to intense debate in the scientific community.


2019 ◽  
Vol 32 (24) ◽  
pp. 8537-8561 ◽  
Author(s):  
Jiao Chen ◽  
Aiguo Dai ◽  
Yaocun Zhang

Abstract Increases in atmospheric greenhouse gases will not only raise Earth’s temperature but may also change its variability and seasonal cycle. Here CMIP5 model data are analyzed to quantify these changes in surface air temperature (Tas) and investigate the underlying processes. The models capture well the mean Tas seasonal cycle and variability and their changes in reanalysis, which shows decreasing Tas seasonal amplitudes and variability over the Arctic and Southern Ocean from 1979 to 2017. Daily Tas variability and seasonal amplitude are projected to decrease in the twenty-first century at high latitudes (except for boreal summer when Tas variability increases) but increase at low latitudes. The day of the maximum or minimum Tas shows large delays over high-latitude oceans, while it changes little at low latitudes. These Tas changes at high latitudes are linked to the polar amplification of warming and sea ice loss, which cause larger warming in winter than summer due to extra heating from the ocean during the cold season. Reduced sea ice cover also decreases its ability to cause Tas variations, contributing to the decreased Tas variability at high latitudes. Over low–midlatitude oceans, larger increases in surface evaporation in winter than summer (due to strong winter winds, strengthened winter winds in the Southern Hemisphere, and increased winter surface humidity gradients over the Northern Hemisphere low latitudes), coupled with strong ocean mixing in winter, lead to smaller surface warming in winter than summer and thus increased seasonal amplitudes there. These changes result in narrower (wider) Tas distributions over the high (low) latitudes, which may have important implications for other related fields.


2017 ◽  
Vol 30 (4) ◽  
pp. 1439-1459 ◽  
Author(s):  
Quentin Lejeune ◽  
Sonia I. Seneviratne ◽  
Edouard L. Davin

Abstract During the industrial period, many regions experienced a reduction in forest cover and an expansion of agricultural areas, in particular North America, northern Eurasia, and South Asia. Here, results from the Land-Use and Climate, Identification of Robust Impacts (LUCID) and CMIP5 model intercomparison projects are compared in order to investigate how land-cover changes (LCC) in these regions have locally impacted the biophysical land surface properties, like albedo and evapotranspiration, and how this has affected seasonal mean temperature as well as its diurnal cycle. The impact of LCC is extracted from climate simulations, including all historical forcings, using a method that is shown to capture well the sign and the seasonal cycle of the impacts diagnosed from single-forcing experiments in most cases. The model comparison reveals that both the LUCID and CMIP5 models agree on the albedo-induced reduction of mean winter temperatures over midlatitudes. In contrast, there is less agreement concerning the response of the latent heat flux and, subsequently, mean temperature during summer, when evaporative cooling plays a more important role. Overall, a majority of models exhibit a local warming effect of LCC during this season, contrasting with results from the LUCID studies. A striking result is that none of the analyzed models reproduce well the changes in the diurnal cycle identified in present-day observations of the effect of deforestation. However, overall the CMIP5 models better simulate the observed summer daytime warming effect compared to the LUCID models, as well as the winter nighttime cooling effect.


Sign in / Sign up

Export Citation Format

Share Document