scholarly journals Glacier response to North Atlantic climate variability during the Holocene

2015 ◽  
Vol 11 (3) ◽  
pp. 2009-2036 ◽  
Author(s):  
N. L. Balascio ◽  
W. J. D'Andrea ◽  
R. S. Bradley

Abstract. Small glaciers and ice caps respond rapidly to climate variations and records of their past extent provide information on the natural envelope of past climate variability. Millennial-scale trends in Holocene glacier size are well documented and correspond with changes in Northern Hemisphere summer insolation. However, there is only sparse and fragmentary evidence for higher frequency variations in glacier size because in many Northern Hemisphere regions glacier advances of the past few hundred years were the most extensive and destroyed the geomorphic evidence of ice growth and retreat during the past several thousand years. Thus, most glacier records have been of limited use for investigating centennial scale climate forcing and feedback mechanisms. Here we report a continuous record of glacier activity for the last 9.5 ka from southeast Greenland, derived from high-resolution measurements on a proglacial lake sediment sequence. Physical and geochemical parameters show that the glaciers responded to previously documented Northern Hemisphere climatic excursions, including the "8.2 ka" cooling event, the Holocene Thermal Maximum, Neoglacial cooling, and 20th Century warming. In addition, the sediments indicate centennial-scale oscillations in glacier size during the late Holocene. Beginning at 4.1 ka, a series of abrupt glacier advances occurred, each lasting ~100 years and followed by a period of retreat, that were superimposed on a gradual trend toward larger glacier size. Thus, while declining summer insolation caused long-term cooling and glacier expansions during the late Holocene, climate system dynamics resulted in repeated episodes of glacier expansion and retreat on multi-decadal to centennial timescales. These episodes coincided with ice rafting events in the North Atlantic Ocean and periods of regional ice cap expansion, which confirms their regional significance and indicates that considerable glacier activity on these timescales is a normal feature of the cryosphere. The data provide a longer-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the natural range of Holocene variability.

2015 ◽  
Vol 11 (12) ◽  
pp. 1587-1598 ◽  
Author(s):  
N. L. Balascio ◽  
W. J. D'Andrea ◽  
R. S. Bradley

Abstract. Small glaciers and ice caps respond rapidly to climate variations, and records of their past extent provide information on the natural envelope of past climate variability. Millennial-scale trends in Holocene glacier size are well documented and correspond with changes in Northern Hemisphere summer insolation. However, there is only sparse and fragmentary evidence for higher-frequency variations in glacier size because in many Northern Hemisphere regions glacier advances of the past few hundred years were the most extensive and destroyed the geomorphic evidence of ice growth and retreat during the past several thousand years. Thus, most glacier records have been of limited use for investigating centennial-scale climate forcing and feedback mechanisms. Here we report a continuous record of glacier activity for the last 9.5 ka from southeast Greenland derived from high-resolution measurements on a proglacial lake sediment sequence. Physical and geochemical parameters show that the glaciers responded to previously documented Northern Hemisphere climatic excursions, including the "8.2 ka" cooling event, the Holocene Thermal Maximum, Neoglacial cooling, and 20th century warming. In addition, the sediments indicate centennial-scale oscillations in glacier size during the late Holocene. Beginning at 4.1 ka, a series of abrupt glacier advances occurred, each lasting ~100 years and followed by a period of retreat, that were superimposed on a gradual trend toward larger glacier size. Thus, while declining summer insolation caused long-term cooling and glacier expansion during the late Holocene, climate system dynamics resulted in repeated episodes of glacier expansion and retreat on multi-decadal to centennial timescales. These episodes coincided with ice rafting events in the North Atlantic Ocean and periods of regional ice cap expansion, which confirms their regional significance and indicates that considerable glacier activity on these timescales is a normal feature of the cryosphere. The data provide a longer-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the natural range of Holocene variability.


Geografie ◽  
2008 ◽  
Vol 113 (4) ◽  
pp. 338-350
Author(s):  
Heinz Wanner ◽  
Jonathan Butikofer

During the Holocene (last 12,000 years) nine cold relapses were observed mainly in the North Atlantic Ocean area and its surroundings. Based on the pioneering studies by Bond et al. (1997, 2001) these events are called Bond Cycles and thought to be the Holocene equivalents of the Pleistocene Dansgaard-Oeschger cycles. The first event was the Younger Dryas (~12,000 BP; Broecker 2006), the last one was the Little Ice Age (AD 1350-1860; Grove 1988). A number of trigger mechanisms is discussed (see Table 1), but a theory for the Bond Cycles does not exist. Based on spectral analyses of both, forcing factors and climatological time series, we argue that one single process did likely not cause the Holocene cooling events. It is conceivable that the early Holocene coolings were triggered by meltwater pulses. However, the late Holocene events (e.g., the Little Ice Age) were rather caused by a combination of different trigger mechanisms. In every case it has to be taken in mind that natural variability was also playing a decisive role.


2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


2016 ◽  
Author(s):  
David A. Hodell ◽  
James E.T. Channell

Abstract. We present a 3.2-Myr record of stable isotopes and physical properties at IODP Site U1308 (re-occupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., Sites 982, 607/U1313 and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial-interglacial cycles during the late Pliocene and Quaternary with mode transitions at ~ 2.7, 1.5, 0.9 and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger ice sheets was accompanied by changes in the style, frequency and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav7337 ◽  
Author(s):  
M. Willeit ◽  
A. Ganopolski ◽  
R. Calov ◽  
V. Brovkin

Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary.


2010 ◽  
Vol 23 (21) ◽  
pp. 5668-5677 ◽  
Author(s):  
Vladimir A. Semenov ◽  
Mojib Latif ◽  
Dietmar Dommenget ◽  
Noel S. Keenlyside ◽  
Alexander Strehz ◽  
...  

Abstract The twentieth-century Northern Hemisphere surface climate exhibits a long-term warming trend largely caused by anthropogenic forcing, with natural decadal climate variability superimposed on it. This study addresses the possible origin and strength of internal decadal climate variability in the Northern Hemisphere during the recent decades. The authors present results from a set of climate model simulations that suggest natural internal multidecadal climate variability in the North Atlantic–Arctic sector could have considerably contributed to the Northern Hemisphere surface warming since 1980. Although covering only a few percent of the earth’s surface, the Arctic may have provided the largest share in this. It is hypothesized that a stronger meridional overturning circulation in the Atlantic and the associated increase in northward heat transport enhanced the heat loss from the ocean to the atmosphere in the North Atlantic region and especially in the North Atlantic portion of the Arctic because of anomalously strong sea ice melt. The model results stress the potential importance of natural internal multidecadal variability originating in the North Atlantic–Arctic sector in generating interdecadal climate changes, not only on a regional scale, but also possibly on a hemispheric and even a global scale.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Nicholas Robert Bates ◽  
Rodney J. Johnson

Abstract Ocean chemical and physical conditions are changing. Here we show decadal variability and recent acceleration of surface warming, salinification, deoxygenation, carbon dioxide (CO2) and acidification in the subtropical North Atlantic Ocean (Bermuda Atlantic Time-series Study site; 1980s to present). Surface temperatures and salinity exhibited interdecadal variability, increased by ~0.85 °C (with recent warming of 1.2 °C) and 0.12, respectively, while dissolved oxygen levels decreased by ~8% (~2% per decade). Concurrently, seawater DIC, fCO2 (fugacity of CO2) and anthropogenic CO2 increased by ~8%, 22%, and 72% respectively. The winter versus summer fCO2 difference increased by 4 to 8 µatm decade−1 due to seasonally divergent thermal and alkalinity changes. Ocean pH declined by 0.07 (~17% increase in acidity) and other acidification indicators by ~10%. Over the past nearly forty years, the highest increase in ocean CO2 and ocean acidification occurred during decades of weakest atmospheric CO2 growth and vice versa.


Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S61-S68
Author(s):  
Ramzi Touchan ◽  
David M. Meko ◽  
Kevin J. Anchukaitis

Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.


Sign in / Sign up

Export Citation Format

Share Document