scholarly journals A late Holocene pollen and climate record from Lake Yoa, northern Chad

2011 ◽  
Vol 7 (4) ◽  
pp. 2413-2444 ◽  
Author(s):  
A.-M. Lézine ◽  
W. Zheng ◽  
P. Braconnot ◽  
G. Krinner

Abstract. The discovery of groundwater fed Lake Yoa (19.03° N, 20.31° E) in the hyperarid desert of northern Chad by the German research team ACACIA headed by S. Kröpelin provides a unique, continuous sedimentary sequence of late Holocene age for the entire Saharan desert. Here we present pollen data and climate simulations using the LMDZ atmospheric model with a module representing the climatologically relevant thermal and hydrological processes occurring above and beneath inland water surfaces to document past environmental and climate changes during the last 6000 cal yr BP. Special attention is paid to wind strength and direction, length and amplitude of the rainy season, and on dry spell occurrence, all of which are of primary importance for plant distribution and pollen transport. In addition to climate changes and their impact on the natural environment, anthropogenic changes are also discussed. Two main features can be highlighted: (1) the shift from an earlier predominantly monsoonal climate regime to one dominated by northern Mediterranean fluxes occurred after 4000 cal yr BP. The direct consequence of this was the establishment of the modern desert environment at Yoa at 2700 cal yr BP. (2) Changes in climate parameters (simulated rainfall amount and dry spell length) between 6 and 4000 cal yr BP were comparatively minor. However, changes in the seasonal distribution of precipitation during this time dramatically affected the vegetation composition and were at the origin of the retreat of tropical plant communities from the Lake Yoa.

2011 ◽  
Vol 7 (4) ◽  
pp. 1351-1362 ◽  
Author(s):  
A.-M. Lézine ◽  
W. Zheng ◽  
P. Braconnot ◽  
G. Krinner

Abstract. The discovery of groundwater-fed Lake Yoa (19.03° N, 20.31° E) in the hyperarid desert of northern Chad by the German research team ACACIA headed by S. Kröpelin provides a unique, continuous sedimentary sequence of late Holocene age available in the entire Saharan desert. Here we present pollen data and climate simulations using the LMDZ atmospheric model with a module representing the climatologically-relevant thermal and hydrological processes occurring above and beneath inland water surfaces to document past environmental and climate changes during the last 6000 cal yr BP. Special attention is paid to wind strength and direction, length and amplitude of the rainy season, and dry spell occurrence, all of which are of primary importance for plant distribution and pollen transport. In addition to climate changes and their impact on the natural environment, anthropogenic changes are also discussed. Two main features can be highlighted: (1) the shift from an earlier predominantly monsoonal climate regime to one dominated by northern Mediterranean fluxes that occurred after 4000 cal yr BP. The direct consequence of this was the establishment of the modern desert environment at Yoa at 2700 cal yr BP. (2) Changes in climate parameters (simulated rainfall amount and dry spell length) between 6 and 4000 cal yr BP were comparatively minor. However, changes in the seasonal distribution of precipitation during this time interval dramatically affected the vegetation composition and were at the origin of the retreat of tropical plant communities from Lake Yoa.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2008 ◽  
Vol 27 (21-22) ◽  
pp. 2076-2090 ◽  
Author(s):  
A.O. Sawakuchi ◽  
R. Kalchgruber ◽  
P.C.F. Giannini ◽  
D.R. Nascimento ◽  
C.C.F. Guedes ◽  
...  

The Holocene ◽  
2016 ◽  
Vol 26 (12) ◽  
pp. 1924-1938 ◽  
Author(s):  
Yuji Ishii ◽  
Kazuaki Hori ◽  
Arata Momohara ◽  
Toshimichi Nakanishi ◽  
Wan Hong

This study investigated the influence of sea-level and climate changes on the decreased fluvial aggradation and subsequent widespread peat initiation in the middle to late-Holocene in the Ishikari lowland, which is a coastal floodplain formed in response to the postglacial sea-level change. By introducing a new approach to separately evaluate the rates of organic and clastic sediment input, we demonstrated that the peat began to form when the fluvial sedimentation rate was significantly decreased (less than 0.6 mm/yr), while plant macrofossil analysis suggested that lowering of water level is also important to the peat initiation. Such changes in sedimentary environment may be associated with the abrupt abandonment of crevasse splays. The concentrated ages of the peat initiation around 5600–5000, 4600–4300, and 4100–3600 cal. BP suggest that an allogenic control promoted the abandonment of crevasse splays, and different onset ages can be explained by different fluvial responses of the Ishikari River and its tributaries. The abandonment of crevasse splays could result from sea-level fall or decreased precipitation. While submillennial sea-level fluctuations coincident with the peat initiation have not been reported in coastal lowlands of Japan, the close comparison of the onset ages and decreased precipitation recorded in a stalagmite from China, which represents the strength of the East Asian summer monsoon (EASM), suggests that decrease in precipitation led to the abandonment of crevasse splays. Our results may indicate that similar fluvial responses might be common in other coastal floodplains affected by the EASM.


2012 ◽  
Vol 5 (4) ◽  
pp. 3771-3851 ◽  
Author(s):  
V. Masson ◽  
P. Le Moigne ◽  
E. Martin ◽  
S. Faroux ◽  
A. Alias ◽  
...  

Abstract. SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.


2000 ◽  
Vol 53 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Kenneth L. Cole ◽  
Eugene Wahl

AbstractPaleoenvironments of the Torrey Pines State Reserve were reconstructed from a 3600-yr core from Los Peñasquitos Lagoon using fossil pollen, spores, charcoal, chemical stratigraphy, particle size, and magnetic susceptibility. Late Holocene sediments were radiocarbon dated, while the historical sediments were dated using sediment chemistry, fossil pollen, and historical records. At 3600 yr B.P., the estuary was a brackish-water lagoon. By 2800 yr B.P., Poaceae (grass) pollen increased to high levels, suggesting that the rising level of the core site led to its colonization by Spartina foliosa (cord-grass), the lowest-elevation plant type within regional estuaries. An increase in pollen and spores of moisture-dependent species suggests a climate with more available moisture after 2600 yr B.P. This change is similar to that found 280 km to the north at 3250 yr B.P., implying that regional climate changes were time-transgressive from north to south. Increased postsettlement sediment input resulted from nineteenth-century land disturbances caused by grazing and fire. Sedimentation rates increased further in the twentieth century due to closure of the estuarine mouth. The endemic Pinus torreyana (Torrey pine) was present at the site throughout this 3600-yr interval but was less numerous prior to 2100 yr B.P. This history may have contributed to the low genetic diversity of this species.


2011 ◽  
Vol 75 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Elizabeth A. Lynch ◽  
Sara C. Hotchkiss ◽  
Randy Calcote

AbstractWe show how sedimentary charcoal records from multiple sites within a single landscape can be used to compare fire histories and reveal small scale patterns in fire regimes. Our objective is to develop strategies for classifying and comparing late-Holocene charcoal records in Midwestern oak- and pine-dominated sand plain ecosystems where fire regimes include a mix of surface and crown fires. Using standard techniques for the analysis of charcoal from lake sediments, we compiled 1000- to 4000-yr-long records of charcoal accumulation and charcoal peak frequencies from 10 small lakes across a sand plain in northwestern Wisconsin. We used cluster analysis to identify six types of charcoal signatures that differ in their charcoal influx rates, amount of grass charcoal, and frequency and magnitude of charcoal peaks. The charcoal records demonstrate that while fire histories vary among sites, there are regional patterns in the occurrence of charcoal signature types that are consistent with expected differences in fire regimes based on regional climate and vegetation reconstructions. The fire histories also show periods of regional change in charcoal signatures occurring during times of regional climate changes at ~700, 1000, and 3500 cal yr BP.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2840
Author(s):  
Ewa Bogdanowicz ◽  
Emilia Karamuz ◽  
Renata Julita Romanowicz

The flow regime in the River Vistula is influenced by climatic and geographical factors and human intervention. In this study, we focus on an analysis of flow and precipitation variability over time and space following the course of the River Vistula. Multi-purpose statistical analyses of a number of runoff and precipitation characteristics were performed to present a general overview of the temporal and spatial changes. Since the important feature of the hydrological regime of Polish rivers is the seasonality of runoff associated with the occurrence of cold (winter) and warm (summer) seasons within a hydrological year, a seasonal approach is applied to describe specific seasonal features that can be masked when using annual data. In general, the results confirm popular impressions about changes in winter season runoff characteristics, i.e., significantly decreasing daily maxima, increasing daily minima and a decrease in concentration, and so a bigger uniformity of winter daily flows. An interesting behaviour of minimum flows in the summer has been revealed, which is contrary to social perceptions and the alarming changes taking place in the other parts of the world. Additionally, precipitation indexes related to the formation of droughts show no trends, e.g., the mean value of the maximum dry spell length.


2018 ◽  
Vol 32 (16) ◽  
pp. 2496-2509 ◽  
Author(s):  
Antonia Longobardi ◽  
Anne Frederike Van Loon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document