Atmospheric measurements of the Atlantic ITCZ during a ship campaign in summer 2021

2021 ◽  
Author(s):  
Julia Windmiller ◽  
Bjorn Stevens ◽  
Henning Franke ◽  
Ilaria Quaglia ◽  
Katharina Stolla ◽  
...  

<p class="p1">The intertropical convergence zone (ITCZ) plays a central role for the tropical weather and climate and structures the large-scale circulation. As a result, the ITCZ has long been an intensively studied research topic, with most studies of the ITCZ focusing on its long-term and large-scale characteristics. However, recent modeling results have highlighted the role of storm-scale processes in the formation of the ITCZ, suggesting that our limited ability to represent these small-scale processes correctly may contribute to persistent errors in the representation of the ITCZ in climate models. Looking at the ITCZ on short spatial and temporal scales, even the question of where the low-level convergence in the ITCZ occurs appears to be unclear. Do the trade winds from the north and south meet in a narrow line of convergence, or are there two lines of convergence marking the northern and southern edges of the ITCZ? To answer this question, we performed measurements on board the German research vessel Sonne during the campaign "Mooring Rescue" in the tropical Atlantic in summer 2021. During the campaign, the thermodynamic and dynamical state of the atmosphere was measured by frequent radiosonde launches, which provided atmospheric profiles with high vertical resolution extending from the surface to the lower stratosphere. These measurements were supplemented by continuous measurements of the atmospheric boundary layer and lower free troposphere, including optical measurements of water vapor, aerosol, precipitation, wind speed and direction, and cloud base height. Here, we provide a brief overview of the atmospheric measurements and a preliminary assessment of the dynamic state observed during a north-south crossing of the ITCZ. The ship-based measurements were compared with long-term statistics from reanalysis data and satellite observations.<span class="Apple-converted-space"> </span></p>

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


1987 ◽  
Vol 35 (2) ◽  
pp. 135 ◽  
Author(s):  
RB Hacker

Species responses to grazing and environmental factors were studied in an arid halophytic shrubland community in Western Australia. The grazing responses of major shrub species were defined by using reciprocal averaging ordination of botanical data, interpreted in conjunction with a similar ordination of soil chemical properties and measures of soil erosion derived from large-scale aerial photographs. An apparent small-scale interaction between grazing and soil salinity was also defined. Long-term grazing pressure is apparently reduced on localised areas of high salinity. Environmental factors affecting species distribution are complex and appear to include soil salinity, soil cationic balance, geomorphological variation and the influence of cryptogamic crusts on seedling establishment.


2017 ◽  
Author(s):  
Claudia Christine Stephan ◽  
Nicholas P. Klingaman ◽  
Pier Luigi Vidale ◽  
Andrew G. Turner ◽  
Marie-Estelle Demory ◽  
...  

Abstract. Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyze the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ~ 200, 90, and 40 km in the zonal direction at the equator, respectively) are analyzed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China, but improve with finer resolution and coupling. Empirical Orthogonal Teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal-mean timeseries. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.


2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-33
Author(s):  
Janghee Cho ◽  
Samuel Beck ◽  
Stephen Voida

The COVID-19 pandemic fundamentally changed the nature of work by shifting most in-person work to a predominantly remote modality as a way to limit the spread of the coronavirus. In the process, the shift to working-from-home rapidly forced the large-scale adoption of groupware technologies. Although prior empirical research examined the experience of working-from-home within small-scale groups and for targeted kinds of work, the pandemic provides HCI and CSCW researchers with an unprecedented opportunity to understand the psycho-social impacts of a universally mandated work-from-home experience rather than an autonomously chosen one. Drawing on boundary theory and a methodological approach grounded in humanistic geography, we conducted a qualitative analysis of Reddit data drawn from two work-from-home-related subreddits between March 2020 and January 2021. In this paper, we present a characterization of the challenges and solutions discussed within these online communities for adapting work to a hybrid or fully remote modality, managing reconfigured work-life boundaries, and reconstructing the home's sense of place to serve multiple, sometimes conflicting roles. We discuss how these findings suggest an emergent interplay among adapted work practice, reimagined physical (and virtual) spaces, and the establishment and continual re-negotiation of boundaries as a means for anticipating the long-term impact of COVID on future conceptualizations of productivity and work.


2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2015 ◽  
Vol 27 (4) ◽  
pp. 388-402 ◽  
Author(s):  
Verena Haid ◽  
Ralph Timmermann ◽  
Lars Ebner ◽  
Günther Heinemann

AbstractThe development of coastal polynyas, areas of enhanced heat flux and sea ice production strongly depend on atmospheric conditions. In Antarctica, measurements are scarce and models are essential for the investigation of polynyas. A robust quantification of polynya exchange processes in simulations relies on a realistic representation of atmospheric conditions in the forcing dataset. The sensitivity of simulated coastal polynyas in the south-western Weddell Sea to the atmospheric forcing is investigated with the Finite-Element Sea ice-Ocean Model (FESOM) using daily NCEP/NCAR reanalysis data (NCEP), 6 hourly Global Model Europe (GME) data and two different hourly datasets from the high-resolution Consortium for Small-Scale Modelling (COSMO) model. Results are compared for April to August in 2007–09. The two coarse-scale datasets often produce the extremes of the data range, while the finer-scale forcings yield results closer to the median. The GME experiment features the strongest winds and, therefore, the greatest polynya activity, especially over the eastern continental shelf. This results in higher volume and export of High Salinity Shelf Water than in the NCEP and COSMO runs. The largest discrepancies between simulations occur for 2008, probably due to differing representations of the ENSO pattern at high southern latitudes. The results suggest that the large-scale wind field is of primary importance for polynya development.


2019 ◽  
Author(s):  
Thibaud M. Fritz ◽  
Sebastian D. Eastham ◽  
Raymond L. Speth ◽  
Steven R. H. Barrett

Abstract. Emissions from aircraft engines contribute to atmospheric NOx, driving changes in both the climate and in surface air quality. Existing atmospheric models typically assume instant dilution of emissions into large-scale grid cells, neglecting non-linear, small-scale processes occurring in aircraft wakes. They also do not explicitly simulate the formation of ice crystals, which could drive local chemical processing. This assumption may lead to errors in estimates of aircraft-attributable ozone production, and in turn to biased estimates of aviation’s current impacts on the atmosphere and the effect of future changes in emissions. This includes soot emissions, on which contrail ice forms. These emissions are expected to reduce as biofuel usage increases, but their chemical effects are not well captured by existing models. To address this problem, we develop a Lagrangian model which explicitly models the chemical and microphysical evolution of an aircraft plume. It includes a unified tropospheric-stratospheric chemical mechanism that incorporates heterogeneous chemistry on background and aircraft-induced aerosols. Microphysical processes are also simulated, including the formation, persistence, and chemical influence of contrails. The plume model is used to quantify how the long-term (24-hour) atmospheric chemical response to an aircraft plume varies in response to different environmental conditions, and engine characteristics, and fuel properties. We find that an instant dilution model consistently overestimates ozone production compared to the plume model, up to a maximum error of ~ 200 % at cruise altitudes. Instant dilution of emissions also underestimates the fraction of remaining NOx, although the magnitude and sign of the error vary with season, altitude, and latitude. We also quantify how changes in soot emissions affect plume behavior. Our results show that a 50 % reduction in black carbon emissions, as may be possible through blending with certain biofuels, leads to contrails which evaporate ~ 9 % faster and are 14 % optically thinner. The conversion of emitted NOx to HNO3 and N2O5 falls by 65 % and 69 % respectively, resulting in chemical feedbacks which are not resolved by instant-dilution approaches. The persistent discrepancies between results from the instant dilution approach and from the aircraft plume model demonstrate that a parametrization of effective emission indices should be incorporated into 3-D atmospheric chemistry transport models.


Sign in / Sign up

Export Citation Format

Share Document