scholarly journals The Camarat granite (Maures Massif, SE France): a tectonic marker of the late orogenic evolution of the South European Variscan Belt

Author(s):  
Olivier Bolle ◽  
Michel Corsini ◽  
Hervé Diot ◽  
Oscar Laurent ◽  
Raphaël Melis

<p>A significant portion of the Maures-Tanneron Massif (SE branch of the European Variscan Belt) is occupied by late orogenic, anatectic crustal granitoids that were emplaced at ca. 325-300 Ma (Upper Carboniferous)<sup>1,2</sup>. The Camarat granite<sup>3</sup> is one of the smallest representatives of these granitoids (~2.5 km<sup>2</sup>). It is a composite intrusion exposed in migmatitic gneisses of the Maures Massif, along the southern shore of the Saint-Tropez Peninsula. From west to east, it consists of an E-W strip of Ms-Bt-Crd leucogranite where coarse- and fine-grained facies are found in similar amounts, and two bodies of Bt-Ms leucogranite, dominantly coarse-grained.</p><p>Zircon and monazite from two samples of the Camarat granite have been analyzed by LA-ICP-MS for U-Pb dating. Sixteen monazite analyses from the fine-grained facies of the E-W granite strip give a Concordia age of 303.5 ± 1.8 Ma (2 S.E., MSWD = 0.9). Sixteen zircons from the coarse-grained facies of the easternmost intrusion provide a Concordia age of 304.6 ± 2.1 Ma (2 S.E., MSWD = 1.2). The two dates are identical within uncertainty and are considered to constrain crystallization of the Camarat granite at ~304 Ma (Kasimovian–Gzhelian limit).</p><p>Twenty-one measurements of the anisotropy of magnetic susceptibility (AMS) and direct textural quantifications through image analysis (IA) of 10 samples give agreeing results that reveal the fabric orientation in the Camarat granite. The foliation has a variable orientation, with a weighted average of N65°E/26°NNW for the AMS data and N77°E/17°NNW for the IA data (D = 10°). The lineation pattern is more homogeneous, displaying a consistent northerly shallow plunge (mean of N12°E/22°NNE vs. N22°E/20°NNE; D = 10°). The Camarat granite lineations are parallel to lineations in the gneissic country rocks. These were produced during the last Variscan tectonic event evidenced in the area, a partitioned transpression phase, localized along ca. N-S sinistral strike-slip shear zones<sup>4</sup>. It is proposed that the ascent of the Camarat granite was favoured by such strike-slip structures and that pull-aparts represent the sites of emplacement, as best exemplified by the E-W granite strip.</p><p>In the Corso-Sardinian Block, another portion of the SE Variscides formerly juxtaposed to the Maures-Tanneron Massif<sup>5</sup>, a model of progressive transition from orogen-parallel flow (late orogenic, Upper Carboniferous transpression) to orogen-perpendicular extension (post orogenic, Permian rifting) has been recently proposed<sup>6</sup>. Such a model may be extended to other areas of the SE Variscan Belt, in particular to the Maures-Tanneron Massif which is cut and bordered by ca. E-W Permian grabens<sup>7</sup>, implying that a ca. N-S direction of stretching, as recorded by the 304 Ma Camarat granite, was still prevailing in Permian times.</p><p> </p><ol><li>Duchesne et al., Lithos 162-163, 195-220 (2013). 2. Schneider et al., Geol. Soc. Spec. Pub. 405, 313-331 (2014). 3. Amenzou & Pupin, C. R. Acad. Sc. Paris (Série II) 303, 697-700 (1986). 4. Corsini & Rolland, C. R. Geoscience 341, 214-223 (2009). 5. Edel et al., Geol. Soc. Spec. Pub. 405, 333-361 (2014). 6. Casini et al., Tectonophysics 646, 65-78 (2015). 7. Toutin-Morin, Ann. Soc. géol. Nord 106, 183-187 (1987).</li> </ol>

1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.


2009 ◽  
Vol 180 (3) ◽  
pp. 231-246 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Michel Colchen ◽  
Charles Cartannaz ◽  
Alain Cocherie ◽  
...  

AbstractThe Variscan continental collision has led to the development of large strike-slip shear zones in western Europe. Our study focuses on the regional deformation and shear zone patterns in the Massif Armoricain and the French Massif Central. The synthesis of granite emplacement ages associated to granite deformation fields, allow us to propose a geodynamic model for the tectonic evolution of this part of the Variscan belt between 370 Ma – 320 Ma (Late Devonian – Namurian).After the first steps of the continental subduction-collision, leading to high temperature and anatexis associated with N-S shortening at 380-370 Ma (Frasnian to Famennian), the southern part of the Massif Armoricain and western part of French Massif Central underwent large dextral shearing along N100-N130 trending shear zones up to early Visean time. These large-scale displacements progressively decreased at around 350-340 Ma, during the first emplacements of biotite bearing granites (Moulins-les Aubiers-Gourgé massif and Guéret massif intrusions).During middle Visean times, the shortening axis direction rotated towards a NNE-SSW direction implying changes in the regional deformation field. The occurrence of N070-N100 sinistral and N110-N130 dextral conjugate shear zones within leucogranites are related to that time. Finally, new N150-N160 dextral shear zones appeared in middle to late Visean times: as for examples, the Parthenay and the Pradines shear zones in the SE Massif Armoricain and the Millevaches massif, respectively. These shear zones were conjugated to the sinistral N020 Sillon Houiller in the French Massif Central. They reflect large scale brittle continental indentation in the French Variscan belt during the middle to late Visean.


1988 ◽  
Vol 52 (368) ◽  
pp. 603-613 ◽  
Author(s):  
G. Marcelot ◽  
J. Ph. Rançon

AbstractThe Visoke complex is one of the main Quaternary volcanic centres of the Virunga Range, located north of lake Kivu. Mineralogical (microprobe) data are given for two representative leucitite lavas; one sample contains a complex coarse-grained xenolith (phlogopite, diopside, leucite, titanomagnetite, perovskite and apatite) and megacrysts of pyroxene, phlogopite and olivine scattered in fine-grained leucite-rich host lava. Compared with the typical leucite-dominated, low-pressure phenocryst assemblage of the two samples studied, the chemical trends of ferromagnesian crystals suggest an earlier igneous event (high-pressure phenomenon) strongly related to the leucite-bearing magma suite.


2017 ◽  
Vol 65 ◽  
pp. 75-86
Author(s):  
Tod E. Waight ◽  
Simon H. Serre ◽  
Sebastian H. Næsby ◽  
Tonny B. Thomsen

Previous geochronological studies on the Danish island of Bornholm have not identified any rocks older than c. 1.46 Ga. New LA-ICP-MS U-Pb zircon ages are presented for a xenolith within, and the country rock gneiss adjacent to, the Svaneke Granite on Bornholm. The xenolith is fine-grained and quartz-rich and was likely derived from either a quartz-rich sedimentary protolith or a hydrothermally altered felsic volcanic rock. The relatively fine-grained felsic nature of the country rock gneiss and the presence of large zoned feldspars that may represent phenocrysts suggest its protolith may have been a felsic volcanic or shallow intrusive rock. A skarn-like inclusion from a nearby locality likely represents an originally carbonate sediment and is consistent with supracrustal rocks being present at least locally. Zircon data from the xenolith define an upper intercept age of 1483 ± 12 Ma (2σ, MSWD = 2.5) with a poorly defined lower intercept age of 474 ± 250 Ma, and a weighted average 207Pb/206Pb age of 1477.9 ± 4.6 Ma; both these ages are older than the host Svaneke Granite (weighted average 207Pb/206Pb age of 1465.0 ± 4.8 Ma). Zircons from the gneiss define an upper intercept age of 1477.7 ± 6.8 Ma when anchored at 0 Ma, and a weighted average 207Pb/206Pb age of 1475.4 ± 6.6 Ma which overlaps statistically with the Svaneke Granite age. These ages are currently the oldest ages determined for in situ rocks on Bornholm. Evidence for substantially older basement lithologies (e.g. 1.8 Ga as observed in southern Sweden) remains absent. The zircons display clear oscillatory zoning, have Th/U typical of magmatic zircons and in some cases preserve inherited cores, all of which suggest that the ages are robust and do not represent resetting due to incorporation within or intrusion by the Svaneke Granite. Inherited zircons are not common; they have ages (c. 1.6–1.8 Ga) that are similar to those observed in other felsic basement lithologies on Bornholm. These new results suggest that prior to intrusion of the Svaneke Granite, the upper crust on Bornholm was dominated, at least locally, by lithologies similar in composition to the currently exposed felsic basement. The protoliths to the two samples investigated here must have been buried to mid-crustal depths over a relatively short time period (c. 10 Ma) prior to intrusion of the Svaneke Granite. This suggests a dynamic tectonic environment and is consistent with evidence for broadly simultaneous magmatism and deformation in basement rocks at 1.46 Ga in southern Scandinavia and burial and metamorphism of sediments in southern Skåne.


2020 ◽  
Vol 41 ◽  
pp. 83-86
Author(s):  
O.B. Vysotsky ◽  
◽  
L.M. Stepanyuk ◽  
T.I. Dovbush ◽  
N.O. Kovalenko ◽  
...  

The article presents the results of uranium-lead dating of zircon from fine-grained granite of the Osnytsia block of the Volyn megablock of the Ukrainian Shield. The variety of granites of the Osnitsky complex is manifested starting from their appearance. They are dominated by massive medium-grained rocks, limitedly developed fine-grained, even less common coarse-grained varieties. The age of typical Osnitsky granites, determined by the uranium-lead method according to zircon, is 1980-1950 million years. Granitoids after gabbroids were formed, and their rooting took place in two stages. At the first stage, depending on the physicochemical and tectonic conditions, a whole range of acid rocks was formed – from leptitelike (fine-grained) to large-medium-grained granites. In the second stage, coarse-grained, typical Osnitsky granites took root. One of the most characteristic macroscopic features of Osnitsky granites is that quartz is almost always represented by lilac-gray rounded grains. According to the results of uranium-lead isotope dating, the age of zircon from fine-grained granite is 1973.6 ± 8.4 million years, and 14 ± 24 million years, according to the lower. The weighted average value of the isotopic age in the isotope ratio 207Pb/206Pb is 1969.3 ± 6 million years. The obtained age for zircon from fine-grained granite of the Osnitsky complex corresponds to the time of formation of granites of the Osnitsky block.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 881-901 ◽  
Author(s):  
L. Spruzeniece ◽  
S. Piazolo

Abstract. This study focuses on physiochemical processes occurring in a brittle–ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two-feldspar–quartz–biotite granite is transformed into a medium-grained orthogneiss at the shear zone margins and a fine-grained quartz–muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized, showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data show a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high- and low-strain microstructures in the shear zone represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. Instead, we propose that the microstructural and mineralogical changes in the shear zone centre arise from a local metasomatic alteration around a brittle precursor. When the weaker fine-grained microstructure is established, the further flow is controlled by transient porosity created at (i) grain boundaries in fine-grained areas deforming by grain boundary sliding (GBS) and (ii) transient dilatancy sites at porphyroclast–matrix boundaries. Here a growth of secondary quartz occurs from incoming fluid, resulting in significant changes in bulk composition and eventually rheological hardening due to the precipitation-related increase in the mode and grain size of quartz. In contrast, within the shear zone margins the amount of fluid influx and associated reactions is limited; here deformation mainly proceeds by dynamic recrystallization of the igneous quartz grains. The studied shear zone exemplifies the role of syn-deformational fluids and fluid-induced reactions on the dominance of deformation processes and subsequent contrasting rheological behaviour at micron to metre scale.


2014 ◽  
Vol 185 (3) ◽  
pp. 171-189 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Charles Cartannaz ◽  
Philippe Rossi

AbstractThe Variscan continental collision induced the development of large crustal melting in the western French Massif Central, accompanied by emplacement and deformation of syn- to post-tectonic granites spatially related to normal and strike slip faulting. Our study focuses on the regional deformation and shear zone patterns in the Millevaches massif, one of the largest magmatic area of the French Massif Central. In this massif, the syn-tectonic intrusions are related i) to the dextral wrenching along the Treignac-Pradines shear zones and the Creuse faults system, and ii) to the coeval extension along the N000°–N020° normal faults on the western edge of the Millevaches massif (Bourganeuf and Argentat faults). The analysis of deformation and kinematics correlated to new datations of granites allow us to propose a pull-apart model to explain the tectono-magmatic evolution of this part of the Variscan belt from 350 Ma to 325 Ma. At that time, these granites intruded a “pull-apart” system bounded by two major N140°–160° dextral strike-slip zones operating in the middle continental crust during a bulk N020° regional shortening.From 325 Ma to 320 Ma, a clockwise rotation of the regional shortening axis was responsible for the late reactivation of the N020° eastern Millevaches tectonic border as a dextral fault system (Felletin-Ambrugeat fault system). This NE-SW shortening displaced the N140°–160° Creuse fault system and induced a reverse motion along the northern border of the Millevaches massif (St-Michel-de-Veisse fault). This Visean tectono-magmatic event induced the late exhumation of the Millevaches massif with respect to surrounding units and favoured the widespread granite emplacement in this part of the Variscan belt.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Author(s):  
Zhuliang Yao ◽  
Shijie Cao ◽  
Wencong Xiao ◽  
Chen Zhang ◽  
Lanshun Nie

In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, Balanced Sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that Balanced Sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as finegrained sparsity.


Sign in / Sign up

Export Citation Format

Share Document