New BioGeoChemical products provided by the Copernicus Marine Service

Author(s):  
Virginie Racapé ◽  
Vidar Lien ◽  
Nilsen Jan Even Øie ◽  
Havard Vindenes ◽  
Leonidas Perivoliotis ◽  
...  

<p>The Copernicus Marine service is a “one-stop-shop” providing freely available operational data on the state of the marine environment for use by marine managers, advisors, and scientists, as well as intermediate and end users in marine businesses and operations. The Copernicus Marine service offers operationally updated and state-of-the-art products that are well documented and transparent. The European Commission’s long-term commitment to the Copernicus program offers long-term visibility and stability of the Copernicus Marine products. Furthermore, Copernicus Marine offers a dedicated service desk, in addition to training sessions and workshops.</p><p>Here, we present the in situ biogeochemical data products distributed by the Copernicus Marine System since 2018. It offers available data of chlorophyll-<em>a</em>, oxygen, and nutrients collected across the globe. These products integrate observation aggregated from the Regional EuroGOOS consortium (Arctic-ROOS, BOOS, NOOS, IBI-ROOS, MONGOOS) and Black Sea GOOS as well as from SeaDataNet2 National Data Centers (NODCs) and JCOMM global systems (Argo, GOSUD, OceanSITES, GTSPP, DBCP) and the Global telecommunication system (GTS) used by the Met Offices.</p><p>The in situ Near Real Time biogeochemical product is updated every month whereas the reprocessed product is updated two times per year. Products are delivered on NetCDF4 format compliant with the CF1.7 standard and well-documented quality control procedures.</p>

2017 ◽  
Vol 98 (11) ◽  
pp. 2411-2428 ◽  
Author(s):  
Kylie J. Park ◽  
Kei Yoshimura ◽  
Hyungjun Kim ◽  
Taikan Oki

Abstract Over 150 years of investigations into global terrestrial precipitation are revisited to reveal how researchers estimated annual means from in situ observations before the age of digitization. After introducing early regional efforts to measure precipitation, the pioneering estimates of terrestrial mean precipitation from the late nineteenth and early twentieth centuries are compared to successive estimates, including those using the latest gridded precipitation datasets available. The investigation reveals that the range of the early estimates is comparable to the interannual variation in terrestrial mean precipitation derived from the latest Climatic Research Unit (CRU) dataset. In-depth revisions of the estimates were infrequent up to the 1970s, due in part to difficulty obtaining and maintaining up-to-date datasets with global coverage. This point is illustrated in a “family tree” that identifies the key publications that subsequent authors referenced, sometimes decades after the original publication. Significant efforts to collate global observations facilitated new investigations and improved data exchange, for example, in the International Hydrological Decade (1965–74) and following the establishment of the Global Telecommunication System under the World Weather Watch Programme of the World Meteorological Organization. Also in the 1970s were the first attempts to adjust in situ observations on a global scale to account for gauge undercatch, and this had a noticeable impact on mean annual estimates. There remains no single satisfactory approach to gauge bias adjustment. Echoing the repeated message of past researchers, today’s authors cite poor spatial coverage, temporal inhomogeneity, and inadequate sharing of in situ observations as the key obstacles to obtaining more accurate estimates of terrestrial mean precipitation.


2012 ◽  
Vol 93 (9) ◽  
pp. 1401-1415 ◽  
Author(s):  
Akiyo Yatagai ◽  
Kenji Kamiguchi ◽  
Osamu Arakawa ◽  
Atsushi Hamada ◽  
Natsuko Yasutomi ◽  
...  

A daily gridded precipitation dataset covering a period of more than 57 yr was created by collecting and analyzing rain gauge observation data across Asia through the activities of the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) project. APHRODITE's daily gridded precipitation is presently the only long-term, continental-scale, high-resolution daily product. The product is based on data collected at 5,000–12,000 stations, which represent 2.3–4.5 times the data made available through the Global Telecommunication System network and is used for most daily gridded precipitation products. Hence, the APHRODITE project has substantially improved the depiction of the areal distribution and variability of precipitation around the Himalayas, Southeast Asia, and mountainous regions of the Middle East. The APHRODITE project now contributes to studies such as the determination of Asian monsoon precipitation change, evaluation of water resources, verification of high-resolution model simulations and satellite precipitation estimates, and improvement of precipitation forecasts. The APHRODITE project carries out outreach activities with Asian countries, and communicates with national institutions and world data centers. We have released open-access APHRO_V1101 datasets for monsoon Asia, the Middle East, and northern Eurasia (at 0.5° × 0.5° and 0.25° × 0.25° resolution) and the APHRO_JP_V1005 dataset for Japan (at 0.05° × 0.05° resolution; see www.chikyu.ac.jp/precip/ and http://aphrodite.suiri.tsukuba.ac.jp/). We welcome cooperation and feedback from users.


2014 ◽  
Vol 31 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Feng Xu ◽  
Alexander Ignatov

Abstract The quality of in situ sea surface temperatures (SSTs) is critical for calibration and validation of satellite SSTs. In situ SSTs come from different countries, agencies, and platforms. As a result, their quality is often suboptimal, nonuniform, and measurement-type specific. This paper describes a system developed at the National Oceanic and Atmospheric Administration (NOAA), the in situ SST Quality Monitor (iQuam; www.star.nesdis.noaa.gov/sod/sst/iquam/). It performs three major functions with the Global Telecommunication System (GTS) data: 1) quality controls (QC) in situ SSTs, using Bayesian reference and buddy checks similar to those adopted in the Met Office, in addition to providing basic screenings, such as duplicate removal, plausibility, platform track, and SST spike checks; 2) monitors quality-controlled SSTs online, in near–real time; and 3) serves reformatted GTS SST data to NOAA and external users with quality flags appended. Currently, iQuam’s web page displays global monthly maps of measurement locations stratified by four in situ platform types (drifters, ships, and tropical and coastal moorings) as well as their corresponding “in situ minus reference” SST statistics. Time series of all corresponding SST and QC statistics are also trended. The web page user can also monitor individual in situ platforms. The current status of iQuam and ongoing improvements are discussed.


Author(s):  
Valérie Quiniou-Ramus ◽  
Rémi Estival ◽  
Pascal Venzac ◽  
Jean-Baptiste Cohuet

Monitoring of meteorological or/and oceanographic conditions is done on many Oil & Gas platforms offshore West and Central Africa (from Nigeria to Angola), but it is often only used in real-time and not necessarily archived on a hard-drive, or it is protected by each company’s IT firewalls thus making it difficult to send the information to the “outer world”. In 2010, TOTAL Oil & Gas Operator launched a project to give remote and public access to this real-time wind, current and also wave or other meteorological / oceanographic (“metocean”) data. The objectives of this initiative were multiple: • Improve weather and ocean hindcasts and forecasts, which will be beneficial to all Oil & Gas operations in Africa, • Help feed a database for future O&G developments; • Enable design checks after ∼1 year of operation; • Serve as a “black box” in case of an incident which could be due to environment; • Help feed or validate ocean and oil spill drift forecast in case of emergency; • Contribute to the international effort of monitoring the oceans in the long term (operational oceanography, climate change, etc.); • Encourage capacity building in Africa by supporting development and maintenance of technical solutions to reach objectives In 2013, with the support of the French Meteorological Office Météo-France, the data from half a dozen platforms offshore Nigeria, Congo and Angola will be available on the World Meteorological Organization’s (WMO) Global Telecommunication System (GTS). This paper will present the type of metocean stations that are part of this network “MODANET”, the IT architecture that was selected to send it out of the Company’s network, the quality control undertaken by Meteo France before sending it to the GTS, and future possible use of the data that are envisaged.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


Sign in / Sign up

Export Citation Format

Share Document