Climate services for water resources – the Australian experience

Author(s):  
Louise Wilson ◽  
Chantal Donnelly ◽  
Pandora Hope ◽  
Elisabeth Vogel ◽  
Wendy Sharples ◽  
...  

<p>Climate change is already impacting on Australian water resources with step changes in rainfall regimes, changes in catchment functioning and drier, hotter conditions creating major challenges for water resource management.  Water resources in most parts of the country are influenced by high interannual variability. Thus Australia's operational water management, as well as water policy and infrastructure development decisions require high resolution information that realistically defines this variability both for the past, at seasonal scales, and into the future.</p><p>In Australia, water information accounting for climate change that is available to planners and resource managers, exists for limited geographical regions such as single catchments, urban regions or states. It is typically sourced from multiple regional downscaling efforts and using different methods to interpret this data for hydrological impacts. These regional downscaling and hydrological impact data collections are either not application-ready or tailored for specific purposes only, which poses additional barriers to their use across the water and other sectors. The needs of the water sector in managing this resource over vast river basins which cross jurisdictional boundaries, such as the Murray Darling Basin, have provided a challenge for providers of climate projection information and climate services. Consistent, agreed upon approaches across impacts at the national scale are yet to be developed. However, an accessible and consistent set of climate projections for water will help ensure that climate change risks are properly factored into decision-making in the water sector.</p><p>The Australian Bureau of Meteorology is developing a seamless national landscape water service, combining historical data on water availability with forecast products, as well as hydrological impact projections. This system uses a consistent methodology based upon the Australian Water resources Assessment (AWRA-L) hydrological model across all time scales. Once delivered, these new products will contribute towards comparable water services for the water, agricultural, energy, and other sectors, providing data across timescales. From a user's perspective the service will facilitate understanding of both past and future variability across multiple timescales of interest including the associated impacts of a changing climate. Providing a seamless service will improve operational decision making by putting short- and medium-term forecasts in the context of the past and future climate variability. Operational decision making can therefore be better integrated with longer-term strategic decision making on climate change.</p><p>For services to meet user needs they must be designed in consultation with these users. An extensive user centred design (UCD) process underpins the scope and nature of the new service. Insights will be shared from the UCD outcomes including user-defined data requirements of past and future variability. Users clearly expressed needs for guidance material and information about skill, confidence and uncertainty to accompany and contextualise climate information which is a major focus of this seamless water service. To engage users and ensure useful outputs, co-design principles are being employed as part of the confidence and uncertainty assessment process to be undertaken as part of the hydrological projections service, which will underpin development of guidance to assist users navigate multiple datasets.</p>

2021 ◽  
Author(s):  
Elisa Delpiazzo

<p>Due to the pervasive nature of climate change impacts, and their relevance for human welfare, climate services delivering advanced knowledge of climate change and variation are crucial. They aid informed decision-making at relevant spatial and timescale and to improve prevention, preparation, adaptation, and minimize residual damages. It is also imperative to evaluate the climate services with a view to quantify the economic value added of these services. Particularly crucial is to assess how the decision-making process of the service end users would unfold with and without the service to identify its differential impact on properly selected indicators of performance.</p><p>The co-generation (also called co-creation) in products and services was made popular by the business literature in the early 2000s and represents a conceptual shift from an emphasis on output to an emphasis on a mutually satisfying relational process between developers and users in service creation. It mainly consists of four stages, namely co-design, co-development, co-delivery, and co-evaluation. The stage of co-evaluation refers to the development and application of agreed upon criteria for the measurement of results. The criteria will touch upon both substantial and procedural issues. From a user perspective, it will be important to evaluate relevance, impact/benefits, utility, credibility, and costs (financial and human resources) in using climate services. These elements are important to assess the effectiveness and uptake of the service and possibly refine it towards these goals. From a developer perspective, important aspects to evaluate will include, for instance, the scientific quality of the service or its skill.</p><p>This presentation introduces the lessons learnt in the context of the H2020 project CLARA (Climate forecast enabled knowledge services) on how to effectively implement the interactions among researchers, end users and service developers to unveil the economic value added of climate services.</p>


2018 ◽  
Vol 11 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Yang Yu ◽  
Yuanyue Pi ◽  
Xiang Yu ◽  
Zhijie Ta ◽  
Lingxiao Sun ◽  
...  

Author(s):  
Peter Gleick

Natural and human-caused climate changes are strongly linked to the hydrologic cycle and freshwater resources. The hydrological cycle is a core part of climate dynamics involving all three common forms of water—ice, liquid, vapor—and the movement of water around the world. Changes in climate affect all aspects of the hydrologic cycle itself through alterations in temperature, precipitation patterns, storm frequency and intensity, snow and ice dynamics, the stocks and flows of water on land, and connections between sea levels and coastal wetlands and ecosystems. In addition, many of the social, economic, and political impacts of climate change are expected to be felt through changes in natural water resources and developed water systems and infrastructure. Extensive research extending back a century or more has been conducted around the world on all the subsection categories presented below. Despite many remaining uncertainties, major advances in basic scientific understanding of the complex processes surrounding freshwater and climate have been made in the past decadet. New ground- and space-based sensors collect far more water- and climate-related data in the 21st century than in the past. Improvements in both regional and global hydrological and climatological modeling have permitted far greater understanding of water and climate links and risks. And more water management institutions and managers are beginning to integrate information about past and future climatic variability into water system planning, design, and construction. Recent observational evidence indicates that the impacts of human-caused climatic changes can now be observed in some regions for a wide range of water resources, including changing evaporative demand associated with rising temperatures, dramatic changes in snow and ice, alterations in precipitation patterns and storm, rising sea levels, and effects on aquatic ecosystems.


Author(s):  
Joe Smith

This paper explores the past, present and future role of broadcasting, above all via the medium of television, in shaping how societies talk, think about and act on climate change and sustainability issues. The paper explores these broad themes via a focus on the important but relatively neglected issue of material demand and opportunities for its reduction. It takes the outputs and decision-making of one of the world's most influential broadcasters, the BBC, as its primary focus. The paper considers these themes in terms of stories, touching on some of the broader societal frames of understanding into which they can be grouped. Media decision-makers and producers from a range of genres frequently return to the centrality of ‘story’ in the development, commissioning and production of an idea. With reference to specific examples of programming, and drawing on interviews with media practitioners, the paper considers the challenges of generating broadcast stories that can inspire engagement in issues around climate change, and specifically material demand. The concluding section proposes actions and approaches that might help to establish material demand reduction as a prominent way of thinking about climate change and environmental issues more widely. This article is part of the themed issue ‘Material demand reduction’.


Water Policy ◽  
2021 ◽  
Vol 23 (S1) ◽  
pp. 144-155
Author(s):  
Paul H. Kirshen

Abstract Adjustments in the designs of water resources systems due to climate change and other nonstationarities are warranted because the benefits of effective adaptation are well recognized. Therefore, the time and resources invested in these analyses are well worth the effort. Before a major investment in an effort is made, however, it is reasonable to determine if the problem is of sufficient complexity or the value of additional information is high enough to warrant the inclusion of complex, sophisticated methods that explicitly include nonstationarity and associated decision-making under deep uncertainty. There exist several planning level conditions such as the lifetime of the project, its criticality, and its reversibility that may indicate detailed analysis is not needed. There are also sequential analysis and screening steps that can be applied to determine the complexity of the methodology needed. Finally, the use of decision analysis can also help determine if additional, detailed analysis, or data collection are necessary. The use of one or several of these methods should be considered as initial steps before undertaking a vulnerability assessment and developing an adaptation strategy for a water resources system.


2020 ◽  
Vol 24 (11) ◽  
pp. 5297-5315
Author(s):  
Sara Suárez-Almiñana ◽  
Abel Solera ◽  
Jaime Madrigal ◽  
Joaquín Andreu ◽  
Javier Paredes-Arquiola

Abstract. Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This study responds to the need for an effective method to integrate climate change projections into water planning and management analysis in order to guide the decision-making, taking into account drought risk assessments. Therefore, this document presents a general and adaptive methodology based on a modeling chain and correction processes, whose main outcomes are the impacts on future natural inflows, a drought risk indicator, and the simulation of future water storage in the water resources system (WRS). This method was applied in the Júcar River basin (JRB) due to its complexity and the multiannual drought events it suffers recurrently. The results showed a worrying decrease in future inflows, as well as a high probability (≈80 %) of being under 50 % of total capacity of the WRS in the near future. However, the uncertainty of the results was considerable from the mid-century onwards, indicating that the skill of climate projections needs to be improved in order to obtain more reliable results. Consequently, this paper also highlights the difficulties of developing this type of method, taking partial decisions to adapt them as far as possible to the basin in an attempt to obtain clearer conclusions on climate change impact assessments. Despite the high uncertainty, the results of the JRB call for action and the tool developed can be considered as a feasible and robust method to facilitate and support decision-making in complex basins for future water planning and management.


2020 ◽  
Author(s):  
Alessandro Dell'Aquila ◽  

<p>MED-GOLD is an EU-funded Horizon 2020 project (https://www.med-gold.eu/) whose main objective is to demonstrate the proof-of-concept for climate services in agriculture by developing case studies for three staples of the Mediterranean food system: grapes, olives and durum wheat.</p><p>MED-GOLD will propose climate services deploying forecast information at seasonal (next 6 months) and long-term (next 30 years). This information will be provided at higher spatial resolution than what is currently available. To provide the highest value for decision-making, the services will be co-developed with professional users from each sector.</p><p>For the wine sector, the project objective is to use the most recent state-of-the-art climate models outputs to produce user-oriented predictions of essential climate variables, bioclimatic indicators  and ad-hoc implemented compound risk indices. All of these indices  are relevant for viticulture at large scales, and more specifically for the MED-GOLD focus region of the Douro valley (Portugal). The indices  will be readily available for users in the grape and wine sector under several different formats and visualizations, allowing for easy, quick and seamless integration into critical decision-making.</p><p>Timely warnings of when climate change might impose a disruptive pressure upon wine production systems offers stakeholders a chance to act proactively both at seasonal (operational campaign planning) and decadal (strategic business planning) time-scales, making the wine sector more resilient to the impacts of climate change.</p>


2021 ◽  
Vol 13 (6) ◽  
pp. 3152
Author(s):  
Mashor Housh ◽  
Tomer Aharon

The common practices for the planning and management of Water Resources Systems (WSSs) have been challenged in the last few decades by global climate change processes, which are observed around the world in increasing frequencies. Climate change is manifested by climate variability, temperature increase, and extreme events such as droughts and floods, which have a decisive effect on natural resource availability and in turn on water quality. Historical records may not be sufficient to reliably account for uncertain future predictions under climate change conditions. While such highly uncertain situations become the “normal” case worldwide, the traditional practices of probabilistic risk measures cannot be used to appropriately quantify the uncertain phenomena under non-stationarity conditions. To better account for uncertain future conditions, the objective of this study is to develop a water management model based on Info-Gap Decision Theory (IGDT) using optimization under deep uncertainty conditions. The Info-Gap theory is a framework that measures the confidence in the operational decisions by quantifying the robustness to uncertainty without accounting for any probabilistic data. To demonstrate the method as a tool to better guide the long-term sustainable operation of the water supply system under uncertain future conditions, we applied the Info-Gap model to the Sea of Galilee (SoG) regional WSS, which is a significant part of the Israeli National Water System (INWS). For Israel, which is, like other Middle East semi-arid regions, prone to dry conditions and limited water availability, there are well-founded concerns that prolonged periods of drought lie ahead, as a consequence of the global climate change processes. This study contributes a management tool for decision making under deep uncertainty to improve the decision-making process and better adapt to unpredictable uncertain future conditions. We demonstrate how the IGDT could be formulated and used to analyze WSSs under different settings and demonstrate how decisions could be derived from the IGDT formulation. We also show a sensitivity analysis for the obtained solutions.


2021 ◽  
Vol 3 ◽  
Author(s):  
Karin André ◽  
Linn Järnberg ◽  
Åsa Gerger Swartling ◽  
Peter Berg ◽  
David Segersson ◽  
...  

Adaptation to climate change is becoming more urgent, but the wealth of knowledge that informs adaptation planning and decision-making is not used to its full potential. Top-down approaches to knowledge production are identified as one important reason for the gap between science and practice and are criticized for not meeting the needs of intended users. In response to this challenge, there is a growing interest in the creation of user-oriented and actionable climate services to support adaptation. At the same time, recent research suggests that greater efforts are needed to evaluate the effectiveness of knowledge co-production processes and the best criteria by which to gauge the quality of knowledge outcomes, while also considering different stakeholder perspectives. This paper explores these issues through a critical assessment of the quality of knowledge for adaptation generated from a climate services co-design process in two case studies in Sweden. The study draws on experiences from a 5-year research collaboration in which natural and social science researchers, together with local stakeholders, co-designed climate services to support climate adaptation planning and decision-making. The well-established knowledge quality criteria of credibility, legitimacy, saliency, usability, and usefulness remain relevant, but are not sufficient to capture factors relating to whether and how the knowledge actually is applied by climate change adaptation planners and decision-makers. We observe that case-specific circumstances beyond the scope of the co-design process, including the decision-making context as well as non-tangible outcomes, also play crucial roles that should be accounted for in the knowledge assessment processes.


Sign in / Sign up

Export Citation Format

Share Document