Dynamic and thermodynamic drivers of Arctic lower tropospheric warm extremes

Author(s):  
Lukas Papritz

<p align="justify">Recent decades have revealed dramatic changes in the high Arctic (> 80°N) related to natural variability and anthropogenic climate change. In particular, episodes of extremely warm temperatures in the lower troposphere and their role for sea ice melting have gained considerable attention. While it has been recognized that injections of warm and humid air masses contribute to wintertime warm anomalies, summertime warm anomalies have also been linked to blocking anticyclones within the high Arctic. Yet, the relative importance of the various thermodynamic and atmospheric dynamical processes that can contribute to the formation of extreme warm anomalies in the high Arctic is poorly understood.</p><p align="justify">In this work, we present a systematic analysis of the processes leading to the formation of winter- and summertime lower tropospheric warm extremes in the high Arctic by means of kinematic backward trajectories based on the ERA-Interim reanalysis. The trajectories enable us to quantify the relative contributions of poleward transport from (potentially) warmer regions, adiabatic warming due to subsidence, and diabatic heating associated with surface sensible heat fluxes and latent heat release. Furthermore, we relate these processes to atmospheric dynamical flow features such as atmospheric blocking and extratropical cyclones.</p><p align="justify">Our analyses reveal that subsidence in blocking anticyclones over the Barents and Kara Seas and diabatic warming by surface sensible heat fluxes are the dominant mechanisms leading to wintertime warm extremes (contributing about 40% each), whereas the transport from southerly latitudes – predominantly accomplished by the injection of warm and humid air masses associated with an intensified and westward displaced storm track in the Nordic Seas - is of secondary importance (20%). Summertime warm anomalies, in contrast, are essentially the result of subsidence in blocking anticyclones (70%) that are located within the high Arctic. Thus, our findings point towards a rich, seasonally varying spectrum of dynamical and thermodynamic processes contributing to Arctic warm extremes that result from a complex interplay between transport induced by dynamical weather systems and diabatic processes. Furthermore, they emphasize the importance of processes within the Arctic for the formation of warm extremes.</p><p align="justify">Papritz, L., 2019: Arctic lower tropospheric warm and cold extremes: horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features, <em>J. Climate</em>, doi: 10.1175/JCLI-D-19-0638.1</p>

2020 ◽  
Vol 33 (3) ◽  
pp. 993-1016 ◽  
Author(s):  
Lukas Papritz

AbstractThe thermodynamic processes and synoptic circulation features driving lower-tropospheric temperature extremes in the high Arctic (>80°N) are investigated. Based on 10-day kinematic backward trajectories from the 5% most intense potential temperature anomalies, the contributions of horizontal and vertical transport, subsidence-induced warming, and diabatic processes to the generation of the Arctic temperature anomaly are quantified. Cold extremes are mainly the result of sustained radiative cooling due to a sheltering of the Arctic from meridional airmass exchanges. This is linked to a strengthening of the tropospheric polar vortex, a reduced frequency of high-latitude blocking, and in winter also a southward shift of the North Atlantic storm track. The temperature anomaly of 60% of wintertime extremely warm air masses (90% in summer) is due to transport from a potentially warmer region. Subsidence from the Arctic midtroposphere in blocking anticyclones is the most important warming process with the largest contribution in summer (70% of extremely warm air masses). In both seasons, poleward transport of already warm air masses contributes around 20% and is favored by a poleward shift of the North Atlantic storm track. Finally, about 40% of the air masses in winter are of an Arctic origin and experience diabatic heating by surface heat fluxes in marine cold air outbreaks. Our study emphasizes the importance of processes in the Arctic and the relevance of anomalous blocking—in winter in the Barents, Kara, and Laptev Seas and in summer in the high Arctic—for the formation of warm extremes.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2019 ◽  
Vol 19 (23) ◽  
pp. 15049-15071
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from midlatitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Institute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17∘ W and 68 to 83∘ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO2 measurements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower troposphere leads to gradients of chemical tracers reflecting different local chemical lifetimes, sources, and sinks. In particular, gradients of CO and CO2 allowed for a trace-gas-based definition of the polar dome boundary for the two measurement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transition zone from both campaigns. In July 2014 the polar dome boundary was at 73.5∘ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5∘ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass properties inside and outside the polar dome in both spring and summer. Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold surfaces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through radiative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arctic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon are highest outside the polar dome, indicating remote pollution sources. Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9±2.5 to 84.9±4.7 ppbv between these two regimes. At the same time CO2 mixing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv. Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history.


2017 ◽  
Vol 30 (8) ◽  
pp. 2717-2737 ◽  
Author(s):  
Lukas Papritz ◽  
Thomas Spengler

Understanding the climatological characteristics of marine cold air outbreaks (CAOs) is of critical importance to constrain the processes determining the heat flux forcing of the high-latitude oceans. In this study, a comprehensive multidecadal climatology of wintertime CAO air masses is presented for the Irminger Sea and Nordic seas. To investigate the origin, transport pathways, and thermodynamic evolution of CAO air masses, a novel methodology based on kinematic trajectories is introduced. The major conclusions are as follows: (i) The most intense CAOs occur as a result of Arctic outflows following Greenland’s eastern coast from the Fram Strait southward and west of Novaya Zemlya. Weak CAOs also originate in flow across the SST gradient associated with the Arctic Front separating the Greenland and Iceland Seas from the Norwegian Sea. A substantial fraction of Irminger CAO air masses originate in the Canadian Arctic and overflow southern Greenland. (ii) CAOs account for 60%–80% of the wintertime oceanic heat loss associated with few intense CAOs west of Svalbard and in the Greenland, Iceland, and Barents Seas and frequent weak CAOs in the Norwegian and Irminger Seas. (iii) The amount of sensible heat extracted by CAO air masses is set by their intensity and their pathway over the underlying SST distribution, whereas the amount of latent heat is additionally capped by the SST. (iv) Among all CAO air masses, those in the Greenland and Iceland Seas extract the most sensible heat from the ocean and undergo the most intense diabatic warming. Irminger Sea CAO air masses experience only moderate diabatic warming but pick up more moisture than the other CAO air masses.


2017 ◽  
Vol 145 (7) ◽  
pp. 2575-2595 ◽  
Author(s):  
Edoardo Mazza ◽  
Uwe Ulbrich ◽  
Rupert Klein

The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process.


2020 ◽  
Author(s):  
Gesa Meyer ◽  
Elyn Humphreys ◽  
Joe Melton ◽  
Peter Lafleur ◽  
Philip Marsh ◽  
...  

<p>Four years of growing season eddy covariance measurements of net carbon dioxide (CO<sub>2</sub>) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO<sub>2 </sub>uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m<sup>-2</sup>) compared to DL1 (33 ± 11 g C m<sup>-2</sup>). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.</p><p>As recent studies have shown, winter fluxes play an important role in the annual CO<sub>2</sub> balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO<sub>2</sub> losses are substantial and may exceed the growing season CO<sub>2</sub> uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO<sub>2</sub> balance.  </p>


2014 ◽  
Vol 53 (11) ◽  
pp. 2553-2570 ◽  
Author(s):  
Yann Blanchard ◽  
Jacques Pelon ◽  
Edwin W. Eloranta ◽  
Kenneth P. Moran ◽  
Julien Delanoë ◽  
...  

AbstractActive remote sensing instruments such as lidar and radar allow one to accurately detect the presence of clouds and give information on their vertical structure and phase. To better address cloud radiative impact over the Arctic area, a combined analysis based on lidar and radar ground-based and A-Train satellite measurements was carried out to evaluate the efficiency of cloud detection, as well as cloud type and vertical distribution, over the Eureka station (80°N, 86°W) between June 2006 and May 2010. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat data were first compared with independent ground-based cloud measurements. Seasonal and monthly trends from independent observations were found to be similar among all datasets except when compared with the weather station observations because of the large reported fraction of ice crystals suspended in the lower troposphere in winter. Further investigations focused on satellite observations that are collocated in space and time with ground-based data. Cloud fraction occurrences from ground-based instruments correlated well with both CALIPSO operational products and combined CALIPSO–CloudSat retrievals, with a hit rate of 85%. The hit rate was only 77% for CloudSat products. The misdetections were mainly attributed to 1) undetected low-level clouds as a result of sensitivity loss and 2) missed clouds because of the distance between the satellite track and the station. The spaceborne lidar–radar synergy was found to be essential to have a complete picture of the cloud vertical profile down to 2 km. Errors are quantified and discussed.


2021 ◽  
Vol 21 (17) ◽  
pp. 13287-13309
Author(s):  
Jakob Boyd Pernov ◽  
Bjarne Jensen ◽  
Andreas Massling ◽  
Daniel Charles Thomas ◽  
Henrik Skov

Abstract. While much research has been devoted to the subject of gaseous elemental mercury (GEM) and gaseous oxidized mercury (GOM) in the Arctic spring during atmospheric mercury depletion events, few studies have examined the behavior of GOM in the High Arctic summer. GOM, once deposited and incorporated into the ecosystem, can pose a threat to human and wildlife health, though there remain large uncertainties regarding the transformation, deposition, and assimilation of mercury into the food web. Therefore, to further our understanding of the dynamics of GOM in the High Arctic during the late summer, we performed measurements of GEM and GOM, along with meteorological parameters and atmospheric constituents, and utilized modeled air mass history during two summer campaigns in 2019 and 2020 at Villum Research Station (Villum) in northeastern Greenland. Seven events of enhanced GOM concentrations were identified and investigated in greater detail. In general, the common factors associated with event periods at ground level were higher levels of radiation and lower H2O mixing ratios, accumulated precipitation, and relative humidity (RH), although none were connected with cold temperatures. Non-event periods at ground level each displayed a different pattern in one or more parameters when compared to event periods. Generally, air masses during event periods for both campaigns were colder and drier, arrived from higher altitudes, and spent more time above the mixed layer and less time in a cloud compared to non-events, although some events deviated from this general pattern. Non-event air masses displayed a different pattern in one or more parameters when compared to event periods, although they were generally warmer and wetter and arrived from lower altitudes with little radiation. Coarse-mode aerosols were hypothesized to provide the heterogenous surface for halogen propagation during some of the events, while for others the source is unknown. While these general patterns were observed for event and non-event periods, analysis of individual events showed more specific origins. Five of the seven events were associated with air masses that experienced similar conditions: transported from the cold, dry, and sunlit free troposphere. However, two events experienced contrasting conditions, with air masses being warm and wet with surface layer contact under little radiation. Two episodes of extremely high levels of NCoarse and BC, which appear to originate from flaring emissions in Russia, did not contribute to enhanced GOM levels. This work aims to provide a better understanding of the dynamics of GOM during the High Arctic summer.


2013 ◽  
Vol 7 (1) ◽  
pp. 073531 ◽  
Author(s):  
Lejiang Yu ◽  
Zhanhai Zhang ◽  
Mingyu Zhou ◽  
Shiyuan Zhong ◽  
Donald H. Lenschow ◽  
...  

2017 ◽  
Vol 17 (22) ◽  
pp. 13747-13766 ◽  
Author(s):  
Franziska Köllner ◽  
Johannes Schneider ◽  
Megan D. Willis ◽  
Thomas Klimach ◽  
Frank Helleis ◽  
...  

Abstract. Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during an aircraft-based measurement campaign (NETCARE 2014). We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On the basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). Two main pieces of evidence suggest that these TMA-containing particles originated from emissions within the Arctic boundary layer. First, the maximum fraction of particulate TMA occurred in the Arctic boundary layer. Second, compared to particles observed aloft, TMA particles were smaller and less oxidized. Further, air mass history analysis, associated wind data and comparison with measurements of methanesulfonic acid give evidence of a marine-biogenic influence on particulate TMA. Moreover, the external mixture of TMA-containing particles and sodium and chloride (Na ∕ Cl-) containing particles, together with low wind speeds, suggests particulate TMA results from secondary conversion of precursor gases released by the ocean. In contrast to TMA-containing particles originating from inner-Arctic sources, particles with biomass burning markers (such as levoglucosan and potassium) showed a higher fraction at higher altitudes, indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for composition and growth of summertime Arctic aerosol.


Sign in / Sign up

Export Citation Format

Share Document