Catchment-scale assessment of future changes in flood regimes in Norway using stochastic weather generation based on GCM output

Author(s):  
Deborah Lawrence ◽  
Abdelkader Mezghani ◽  
Marie Pontopiddan ◽  
Rasmus Benestad ◽  
Kajsa Parding ◽  
...  

<p>Assessment of climate change impacts on hydrological processes is often based on simulations driven by precipitation and temperature series derived from bias-adjusted output from Regional Climate Models (RCMs) using boundary conditions from Global Climate Models (GCMs).  This procedure gives, in principle, locally ‘correct’ results, but is also very demanding of time and resources. In some cases, the dynamical downscaling (i.e. RCM) followed by bias adjustment procedures fails to preserve the climate change signal found in the underlying GCM simulations, thus undermining the reliability of the resulting hydrological simulations. As an alternative, we have used the stochastic weather generator D2Gen (Mezghani and Hingray, 2009, J. Hydrol., 377(3–4): 245–60) to create multiple realisations of catchment-scale precipitation and temperature data series directly from two GCMs (MPI-ESM-LR and NorESM-M1) for the period 1951-2100. D2Gen builds on a suite of Generalised Linear Models (GLMs) to generate precipitation and temperature (i.e. predictands) as a function of explanatory climate variables (or predictors) derived from the GCM such as surface temperature, sea level pressure, westerly and zonal wind components, relative humidity and total precipitation. In this study, we have applied D2Gen on area-averaged precipitation and temperature data for 18 hydrological catchments distributed across Norway. Weather generation is then undertaken based on the expected mean modelled by the GLM plus a noise component to account for local features and random effects introduced by local physical processes that are otherwise not accounted for.  The weather generator was trained for each catchment based on observed precipitation and temperature series for the period 1985-2014, and stochastic weather generation was then performed to construct catchment-scale precipitation and temperature series for the period 1951-2100 that were further used in hydrological simulations based on the HBV hydrological model for the 18 catchments. </p><p>Validation of the D2Gen results was based on comparisons with observed annual, seasonal and maximum temperature and precipitation, as well as with observed average annual and maximum annual discharge using 30-year time slices.  Comparisons were also made with projected changes generated from hydrological simulations based on a) EURO-CORDEX RCM simulations (MPI-ESM-LR_SMHI-RCA4 and MPI_CCLM-CM5) for the MPI GCM; and b) high resolution (4 km) simulations with the WRF model driven by a bias-corrected NorESM GCM.  Results suggest that in most catchments the D2gen approach performs equally well or sometimes even better than the traditional ‘bias-corrected RCM approach’ in reproducing the 30-year average annual flood during the historical period. We also found that for the projection period, the simulations based directly on the GCM output (via d2gen) tend to give slightly larger projected increases in the average annual flood in rainfall-dominated catchments than does the use of bias-corrected RCM simulations. Overall, the results indicate that the D2Gen weather generator offers a feasible alternative approach for projecting catchment-scale impacts on changes in flood regimes under a changing climate.  It also offers the significant advantage that it can be used directly with the CMIP-6 ensemble of GCMs without the time delay associated with the production of the next round of EURO-CORDEX based simulations.</p>

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1074
Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

Evaluation of effects of climate change on climate variable extremes is a key topic in civil and structural engineering, strongly affecting adaptation strategy for resilience. Appropriate procedures to assess the evolution over time of climatic actions are needed to deal with the inherent uncertainty of climate projections, also in view of providing more sound and robust predictions at the local scale. In this paper, an ad hoc weather generator is presented that is able to provide a quantification of climate model inherent uncertainties. Similar to other weather generators, the proposed algorithm allows the virtualization of the climatic data projection process, overcoming the usual limitations due to the restricted number of available climate model runs, requiring huge computational time. However, differently from other weather generation procedures, this new tool directly samples from the output of Regional Climate Models (RCMs), avoiding the introduction of additional hypotheses about the stochastic properties of the distributions of climate variables. Analyzing the ensemble of so-generated series, future changes of climatic actions can be assessed, and the associated uncertainties duly estimated, as a function of considered greenhouse gases emission scenarios. The efficiency of the proposed weather generator is discussed evaluating performance metrics and referring to a relevant case study: the evaluation of extremes of minimum and maximum temperature, precipitation, and ground snow load in a central Eastern region of Italy, which is part of the Mediterranean climatic zone. Starting from the model ensemble of six RCMs, factors of change uncertainty maps for the investigated region are derived concerning extreme daily temperatures, daily precipitation, and ground snow loads, underlying the potentialities of the proposed approach.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 273 ◽  
Author(s):  
Won-Ho Nam ◽  
Guillermo Baigorria ◽  
Eun-Mi Hong ◽  
Taegon Kim ◽  
Yong-Sang Choi ◽  
...  

Understanding long-term changes in precipitation and temperature patterns is important in the detection and characterization of climate change, as is understanding the implications of climate change when performing impact assessments. This study uses a statistically robust methodology to quantify long-, medium- and short-term changes for evaluating the degree to which climate change and urbanization have caused temporal changes in precipitation and temperature in South Korea. We sought to identify a fingerprint of changes in precipitation and temperature based on statistically significant differences at multiple-timescales. This study evaluates historical weather data during a 40-year period (1973–2012) and from 54 weather stations. Our results demonstrate that between 1993–2012, minimum and maximum temperature trends in the vicinity of urban and agricultural areas are significantly different from the two previous decades (1973–1992). The results for precipitation amounts show significant differences in urban areas. These results indicate that the climate in urbanized areas has been affected by both the heat island effect and global warming-caused climate change. The increase in the number of rainfall events in agricultural areas is highly significant, although the temporal trends for precipitation amounts showed no significant differences. Overall, the impacts of climate change and urbanization in South Korea have not been continuous over time and have been expressed locally and regionally in terms of precipitation and temperature changes.


2016 ◽  
Vol 20 (4) ◽  
pp. 1387-1403 ◽  
Author(s):  
Hjalte Jomo Danielsen Sørup ◽  
Ole Bøssing Christensen ◽  
Karsten Arnbjerg-Nielsen ◽  
Peter Steen Mikkelsen

Abstract. Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman–Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km  ×  60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


2021 ◽  
Author(s):  
David J. Peres ◽  
Alfonso Senatore ◽  
Paola Nanni ◽  
Antonino Cancelliere ◽  
Giuseppe Mendicino ◽  
...  

<p>Regional climate models (RCMs) are commonly used for assessing, at proper spatial resolutions, future impacts of climate change on hydrological events. In this study, we propose a statistical methodological framework to assess the quality of the EURO-CORDEX RCMs concerning their ability to simulate historic observed climate (temperature and precipitation). We specifically focus on the models’ performance in reproducing drought characteristics (duration, accumulated deficit, intensity, and return period) determined by the theory of runs at seasonal and annual timescales, by comparison with high-density and high-quality ground-based observational datasets. In particular, the proposed methodology is applied to the Sicily and Calabria regions (Southern Italy), where long historical precipitation and temperature series were recorded by the ground-based monitoring networks operated by the former Regional Hydrographic Offices. The density of the measurements is considerably greater than observational gridded datasets available at the European level, such as E-OBS or CRU-TS. Results show that among the models based on the combination of the HadGEM2 global circulation model (GCM) with the CLM-Community RCMs are the most skillful in reproducing precipitation and temperature variability as well as drought characteristics. Nevertheless, the ranking of the models may slightly change depending on the specific variable analysed, as well as the temporal and spatial scale of interest. From this point of view, the proposed methodology highlights the skills and weaknesses of the different configurations, aiding on the selection of the most suitable climate model for assessing climate change impacts on drought processes and the underlying variables.</p>


2011 ◽  
Vol 11 (12) ◽  
pp. 3275-3291 ◽  
Author(s):  
M. Ruiz-Ramos ◽  
E. Sánchez ◽  
C. Gallardo ◽  
M. I. Mínguez

Abstract. Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble) combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.


2012 ◽  
Vol 518-523 ◽  
pp. 1689-1694
Author(s):  
Yan Wei Zhang ◽  
Wen Shou Wei ◽  
Feng Qing Jiang ◽  
Ming Zhe Liu

Climate changes seriously affect people's daily life, extreme climate events continue to occur throughout the world during 1961-2008. This research 1961-2008 by 51 meteorological stations in Xinjiang, the precipitation and temperature data, show that rising temperatures continue to increase 0.08 degrees Celsius per year and precipitation continues to increase for the 0.71 mm per year in Xinjiang. Climate models were used PRECIS to simulate how the regional climate might change during the present century. The climate of Xinjiang was found to be likely to be even more problematic in the years 2080s than it is at present.


2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


Sign in / Sign up

Export Citation Format

Share Document