Estimation of the annual runoff frequency distribution under a non-stationarity condition within the Budyko framework

Author(s):  
Hanbo Yang ◽  
Ziwei Liu

<p>In the past decades, climate change has been leading to non-stationarity in hydrological variables. Therefore, a simple framework within the Budyko framework is proposed to estimate the annual runoff frequency distribution and provide a new method for hydrological design under non-stationarity conditions. In this framework, the mean and standard deviation of annual runoff are derived by the Choudhury-Yang equation. Furthermore, the P-Ш type frequency curve is selected to calculate the annual runoff on a design return period. Based on this framework, the change in water resources in 207 three-level basins across China during 2020-2050 are estimated according to the Coupled Model Inter-comparison Project Phase 5. The results show that the mean annual runoff will decrease by 2.7% for all basins, and the regional difference will decline, i.e., the mean annual runoff will increase in the north of China and decrease in the south of China. However, the inter-annual variability of annual runoff will increase in more than 70% of basins. Additionally, in the wet year, approximately half of the total basins show decreased runoff change, and in the dry year, decreased change appears in ~65% basins. These findings offer a simple and effective way to re-examine the effects of non-stationarity in hydrological design.</p>

1960 ◽  
Vol 3 (27) ◽  
pp. 610-625
Author(s):  
G. Hattersley-Smith

AbstractGlaciological research on the ice cap to the north of Lake Hazen in northern Ellesmere Island was one of the main objectives of the Canadian I.G.Y. expedition to this area in 1957–1958. The method of nourishment of this ice cap and of Gilman Glacier, one of its southward-flowing outlets, was studied in pit and bore hole profiles above and below the equilibrium line, which was found at an elevation of about 1,200 m. Between an elevation of about 1,450 and 2,000 m. accumulation is by firn formation, while between about 1,280 and 1,450 m. interfingering of firn and superimposed ice occurs. At 1,800 m. the mean annual accumulation over the past twenty years is estimated as 12.8 g. cm.–2. On Gilman Glacier below the equilibrium line variations in density and crystal structure in an ice core to a depth of 25 m. are seen to depend on the proportion of firn to superimposed ice formed during accumulation. These variations correspond to past changes in the position of the equilibrium line. Englacial temperature measurements indicate a mean annual temperature of about –18.5° C. at an elevation of 1 ,040 m. A budget deficit for Gilman Glacier during two years of observations may be related to the increased summer melting of the last 20 years, deduced from pit studies at 1,800 m.


2017 ◽  
Author(s):  
Kai Duan ◽  
Ge Sun ◽  
Steven G. McNulty ◽  
Peter V. Caldwell ◽  
Erika C. Cohen ◽  
...  

Abstract. This study examines the relative roles of climatic variables in altering annual runoff in the conterminous United States (CONUS) in the 21st century, using an ecohydrological model driven with historical records and future scenarios constructed from 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. The results suggest that precipitation has been the primary control of runoff variation during the latest decades, but the role of temperature will outweigh that of precipitation in most regions if future climate change follows the projections of climate models instead of the historical tendencies. Besides these two key factors, increasing humidity is projected to partially offset the additional evaporative demand caused by warming and consequently enhance runoff. Overall, the projections from 20 climate models suggest a high degree of consistency on the increasing trends in temperature, precipitation, and humidity, which will be the major climatic driving factors accounting for 43 % ~ 50 %, 20 % ~ 24 %, and 16 % ~ 23 % of runoff change, respectively. Spatially, while temperature rise is recognized as the largest contributor in most of the CONUS, precipitation is expected to be the dominant factor driving runoff to increase across the Pacific Coast and the Southwest. The combined effects of increasing humidity and precipitation may also surpass the detrimental effects of warming and result in a hydrologically wetter future in the East. However, severe runoff depletion is more likely to occur in the Midwest and South-Central.


2020 ◽  
Vol 33 (4) ◽  
pp. 1261-1281 ◽  
Author(s):  
Yaheng Tan ◽  
Francis Zwiers ◽  
Song Yang ◽  
Chao Li ◽  
Kaiqiang Deng

AbstractPerformance in simulating atmospheric rivers (ARs) over western North America based on AR frequency and landfall latitude is evaluated for 10 models from phase 5 of the Coupled Model Intercomparison Project among which the CanESM2 model performs well. ARs are classified into southern, northern, and middle types using self-organizing maps in the ERA-Interim reanalysis and CanESM2. The southern type is associated with the development and eastward movement of anomalous lower pressure over the subtropical eastern Pacific, while the northern type is linked with the eastward movement of anomalous cyclonic circulation stimulated by warm sea surface temperatures over the subtropical western Pacific. The middle type is connected with the negative phase of North Pacific Oscillation–west Pacific teleconnection pattern. CanESM2 is further used to investigate projected AR changes at the end of the twenty-first century under the representative concentration pathway 8.5 scenario. AR definitions usually reference fixed integrated water vapor or integrated water vapor transport thresholds. AR changes under such definitions reflect both thermodynamic and dynamic influences. We therefore also use a modified AR definition that isolates change from dynamic influences only. The total AR frequency doubles compared to the historical period, with the middle AR type contributing the largest increases along the coasts of Vancouver Island and California. Atmospheric circulation (dynamic) changes decrease northern AR type frequency while increasing middle AR type frequency, indicating that future changes of circulation patterns modify the direct effect of warming on AR frequency, which would increase ARs (relative to fixed thresholds) almost everywhere along the North American coastline.


2018 ◽  
Vol 31 (2) ◽  
pp. 761-774 ◽  
Author(s):  
Chao Wang ◽  
Liguang Wu

The strong westerly shear to the south flank of the tropical upper-tropospheric trough (TUTT) limits the eastward extension of tropical cyclone (TC) formation over the western North Pacific (WNP) and thus the zonal shift of the TUTT in warming scenarios has an important implication for the mean formation location of TCs. The impact of global warming on the zonal shift of the TUTT is investigated by using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of 36 climate models in this study. It is found that considerable spread exists in the zonal position, orientation, and intensity of the simulated-climatologic TUTT in the historical runs, which is forced by observed conditions such as changes in atmospheric composition, solar forcing, and aerosols. The large spread is closely related to the diversity in the simulated SST biases over the North Pacific. Based on the 15 models with relatively high skill in their historical runs, the near-term (2016–35) projection shows no significant change of the TUTT longitude, while the TUTT experiences an eastward shift of 1.9° and 3.2° longitude in the representative concentration pathway (RCP) 4.5 and 8.5 scenarios in the long-term (2081–2100) projection with considerable intermodel variability. Further examination indicates that the projected changes in the zonal location of the TUTT are also associated with the projected relative SST anomalies over the North Pacific. A stronger (weaker) relative SST warming over the North Pacific favors an eastward (westward) shift of the TUTT, suggesting that the spatial pattern of the future SST change is an important factor for the zonal shift of the mean formation location of TCs.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2659
Author(s):  
Bao Shanshan ◽  
Yang Wei ◽  
Wang Xiaojun ◽  
Li Hongyan

In the past several decades, climate change and human activities have influenced hydrological processes, and potentially caused more frequent and extensive flood and drought risks. Therefore, identification and quantification of the driving factors of runoff variation have become a hot research area. This paper used the trend analysis method to show that runoff had a significant downward trend during the past 60 years in the Second Songhua River Basin (SSRB) of Northeast China. The upper, middle, and lower streams of five hydrological stations were selected to analyze the breakpoint of the annual runoff in the past 60 years, and the breakpoints were used to divide the entire study period into two sub-periods (1956–1974 and 1975–2015). Using the water–energy coupling balance method based on Choudhury–Yang equation, the climatic and catchment landscape elasticity coefficient of the annual runoff change was estimated, and attribution analysis of the runoff change was carried out for the Fengman Reservoir and Fuyu stations in SSRB. The change in potential evapotranspiration has a weak effect on the runoff, and change in precipitation and catchment landscape were the leading factors affecting runoff. Impacts of climate change and land cover change were accountable for the runoff decrease by 80% and 11% (Fengman), 17% and 206% (Fuyu) on average, respectively; runoff was more sensitive to climate change in Fengman, and was more sensitive to catchment landscape change in Fuyu. In Fengman, the population was small, owing to the comparatively inhospitable natural conditions, and so human activities were low. However, in Fuyu, human activities were more intensive, and so had more impact on runoff for the Lower Second Songhua River compared to the Upper Second Songhua River.


When we seek the value of a statistical constant, we may either consider the whole aggregate of individuals possessing characteristics of which the constant in question is a function, or we may limit ourselves, from choice or necessity, to the consideration of a ramdom sample of the whole population. The mean height of Englishmen of military age, at a given instant, is a constant which could be determined from a random sample. On the other hand, the mean weight of adult herrings frequenting the North Sea is necessarily to be determined only by a consideration of a sample of the whole population. Statistical constants calculated from a sample give us little information unless we know, at the same time, the manner in which the values may be expected to vary from ramdom sample to ramdom sample, i. e . the frequency distribution of the constant in many samples. The universal custom is to state the "probable error" of the constant, which is equivalent to giving the parameter of the values of the constant in the population as a whole. The parameter-the standard deviation of the frequency distribution-therefore ceases to provide an adequate description of the facts if the frequency distribution differs sensibly from the normal.


2015 ◽  
Vol 12 (1) ◽  
pp. 939-973 ◽  
Author(s):  
D. Zhang ◽  
Z. Cong ◽  
G. Ni ◽  
D. Yang ◽  
S. Hu

Abstract. Warmer climate may lead to less winter precipitation falling as snow. Such a switch in the state of precipitation not only alters temporal distribution of intra-annual runoff, but tends to yield less total annual runoff. Long-term water balance for 282 catchments across China is investigated, showing that decreasing snow ratio reduces annual runoff for a given total precipitation. Within the Budyko framework, we develop an equation to quantify the relationship between snow ratio and annual runoff from a water–energy balance viewpoint. Based on the proposed equation, attribution of runoff change during past several decades and possible runoff change induced by projected snow ratio change using climate experiment outputs archived in the Coupled Model Intercomparison Project Phase 5 are analyzed. Results indicate that annual runoff in northwest mountainous and north high-latitude areas are sensitive to snow ratio change. The proposed model is applicable to other catchments easily and quantitatively for analyzing the effects of possible change in snow ratio on available water resources and evaluating the vulnerability of catchments to climate change.


2015 ◽  
Vol 19 (4) ◽  
pp. 1977-1992 ◽  
Author(s):  
D. Zhang ◽  
Z. Cong ◽  
G. Ni ◽  
D. Yang ◽  
S. Hu

Abstract. A warmer climate may lead to less precipitation falling as snow in cold seasons. Such a switch in the state of precipitation not only alters temporal distribution of intra-annual runoff but also tends to yield less total annual runoff. Long-term water balance for 282 catchments across China is investigated, showing that a decreasing snow ratio reduces annual runoff for a given total precipitation. Within the Budyko framework, we develop an equation to quantify the relationship between snow ratio and annual runoff from a water–energy balance viewpoint. Based on the proposed equation, attribution of runoff change during the past several decades and possible runoff change induced by projected snow ratio change using climate experiment outputs archived in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed. Results indicate that annual runoff in northwestern mountainous and northern high-latitude areas are sensitive to snow ratio change. The proposed model is applicable to other catchments easily and quantitatively for analyzing the effects of possible change in snow ratio on available water resources and evaluating the vulnerability of catchments to climate change.


2017 ◽  
Vol 21 (11) ◽  
pp. 5517-5529 ◽  
Author(s):  
Kai Duan ◽  
Ge Sun ◽  
Steven G. McNulty ◽  
Peter V. Caldwell ◽  
Erika C. Cohen ◽  
...  

Abstract. This study examines the relative roles of climatic variables in altering annual runoff in the conterminous United States (CONUS) in the 21st century, using a monthly ecohydrological model (the Water Supply Stress Index model, WaSSI) driven with historical records and future scenarios constructed from 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. The results suggest that precipitation has been the primary control of runoff variation during the latest decades, but the role of temperature will outweigh that of precipitation in most regions if future climate change follows the projections of climate models instead of the historical tendencies. Besides these two key factors, increasing air humidity is projected to partially offset the additional evaporative demand caused by warming and consequently enhance runoff. Overall, the projections from 20 climate models suggest a high degree of consistency on the increasing trends in temperature, precipitation, and humidity, which will be the major climatic driving factors accounting for 43–50, 20–24, and 16–23 % of the runoff change, respectively. Spatially, while temperature rise is recognized as the largest contributor that suppresses runoff in most areas, precipitation is expected to be the dominant factor driving runoff to increase across the Pacific coast and the southwest. The combined effects of increasing humidity and precipitation may also surpass the detrimental effects of warming and result in a hydrologically wetter future in the east. However, severe runoff depletion is more likely to occur in the central CONUS as temperature effect prevails.


2011 ◽  
Vol 327 ◽  
pp. 165-170
Author(s):  
Ru Xin Ding ◽  
Zheng Hai Wang ◽  
Zu Yi Zhou ◽  
Chang Hai Xu

The paleotopography reconstruction of orogen has an important research value on the study of mountain building and the study of orogen’s regional control over the paleoclimate change. Considering the Dabie orogen’s regional difference in exhumation, this article models the post-orogenic exhumation rates and the relief evolution rates by low-temperature thermochronology and age-elevation relationships. The result shows that the mean exhumation rates(0.07~0.08km/Ma)of the middle block, the southwest block, and the southeast block are higher than the rate(0.06 km/Ma)of the northwest block and the northeast block. The relief evolution rate of the northeast block (3.5) is the highest, the middle block (3.0) follows, the southeast block (2.5) goes after, and those of the north-west block and south-west block(2.0,1.5)are the lowest. This is might be related to the thermal doming extensional structure of Dabie orogen in Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document