Radio-wave reflectivity from cold glaciers

Author(s):  
Olga Yushkova ◽  
Taisiya Dymova ◽  
Viktor Popovnin

<p>Radio echo-sounding is a powerful technique for investigating the subsurface of the glaciers. However, physics underlying the formation of the reflected signal is sometimes oversimplified  in the geophysical glacier studies, leading to wrong results. Various remote sensing techniques use different wavelengths (e.g., 13.575 GHz for CryoSat and 20-25/200-600 MHz for ground-penetrating radar), but it is still not clear which particular wavelengths are the best to detect different characteristics of the ice. Possibly, the results gained using different wavelengths may not coincide but rather complement each other due to frequency dependence of the dielectric permittivity and conductivity of snow, ice and especially water.</p><p>Here we attempt to construct an electrophysical model of a cold glacier. This mathematical model considers the variability of the depth profile of the complex dielectric permittivity depending on the frequency of the probing radio signal and the surface temperature. A series of calculations of the reflection coefficients of radio waves from the modelled glacier show that at low temperatures for frequencies above 1 MHz the real part of the dielectric constant of the glacier does not change with frequency and surface temperature, but depends on the glacier structure, while the depth profile of the loss tangent is constant throughout the glacier.  As wavelength decreases, the absorption of radio-waves by the glacier decreases and the frequency dependence of the reflection coefficient becomes a periodic function, its period and amplitude depend on the glacier thickness, the dielectric constant of the bedrock and ice on the surface.</p><p>The range of radio-waves from 0.1 to 1 MHz is not optimal for sounding cold glaciers: the absorption of radio-waves by ice is large for studying thick layers of the glacier, and the wavelength does not allow studying thin layers. Hence, reflection from the glacier surface prevails upon reflection of the signal. The small absorption of short radio waves by ice leads to the fact that the frequency dependence of the reflection coefficient of short radio-waves is practically the sum of the partial reflections of radio-waves from the surface and internal snow/firn and firn/ice boundaries. Period and amplitude of oscillations of the function  depend on the depth of the internal boundaries and the gradient of dielectric characteristics of ice, snow, firn and bedrock.</p><p>Changes in surface temperature, leading to a change in the loss tangent of the upper glacier layers, are manifested in the phase magnitude of the reflection coefficient of radio-waves:it grows with the temperature. Theoretically, the high-frequency signal reflected from the glacier contains information about the structure of the cold glacier and the depth distribution of the dielectric constant, but to restore the electrophysical parameters of the glaciers, it is necessary to use a broadband signal with smooth spectrum and high digitization speed.</p><p>The reported study was funded by RFBR, project number 18-05-60080 (“Dangerous nival-glacial and cryogenic processes and their impact on infrastructure in the Arctic”).</p>

2018 ◽  
Vol 7 (2.12) ◽  
pp. 222
Author(s):  
Reema Dubey ◽  
Vinod Kumar Singh ◽  
Akash Kumar Bhoi ◽  
Zakir Ali

The endeavor of this paper is to analyze a light weighted flexible antenna for modern communication system. There are three different patch designs with operating frequency 4GHz. These proposed antennas are compact in size, shows high directivity and large bandwidth. Ex-pandable polystyrene foam is used as a substrate because such antenna are bendable, wearable, cheap, require less attention and having good features like low dielectric constant, low loss tangent and better efficiency. The antenna parameters like reflection coefficient, gain, band-width, radiation pattern are analyzed. The reflection coefficient of anticipated antenna provides a good concurrence between simulated and measured result. Foam based design is simulated by using CST studio. 


1996 ◽  
Vol 446 ◽  
Author(s):  
Hong Wang ◽  
S. X. Shang ◽  
X. J. Su ◽  
Z. Wang ◽  
M. Wang

AbstractInsulating thin films of Bi2Ti2O7 with (111) orientation have been prepared on silicon (100)–substrates at a temperature range of 480–550 °C by a MOCVD technique. The dielectric and C‐V properties were studied. The dielectric constant (ɛ) and loss tangent (tanδ) were found to be 180 and 0.01, respectively. The temperature and frequency dependence of dielectric constant were also measured. The Bi2Ti2O7 films are suitable to be used as a novel buffer layer and new insulating gate material in FET devices.


Geophysics ◽  
1973 ◽  
Vol 38 (3) ◽  
pp. 581-599 ◽  
Author(s):  
James R. Rossiter ◽  
Gerald A. LaTorraca ◽  
A. Peter Annan ◽  
David W. Strangway ◽  
Gene Simmons

In such highly resistive geologic environments as ice sheets, salt layers, and the moon’s surface, radio waves penetrate with little attenuation. The field strengths about a transmitting antenna placed on the surface of such an environment exhibit interference maxima and minima which are indicative of the in‐situ electrical properties and the presence of subsurface layering. Experimental results from an analog scale model and from field tests on two glaciers are interpreted on the basis of the theoretical results of Part I. If the upper layer is thick, the pattern is very simple and the dielectric constant of the layer can be easily determined. An upper bound on the loss tangent can be estimated. For thin layers, the depth can be determined if the loss tangent is less than about 0.10, and a crude estimate of scattering can be made.


2018 ◽  
Vol 35 (4) ◽  
pp. 885-892
Author(s):  
A.H. Selçuk ◽  
E. Orhan ◽  
S. Bilge Ocak ◽  
A.B. Selçuk ◽  
U. Gökmen

Abstract The voltage and frequency dependence of dielectric constant є′, dielectric loss є″, electrical modulus M″, M′, loss tangent tanδ and AC electrical conductivity σAC of p-Si/ZnO/PMMA/Al, p-Si/ZnO/Al and p-Si/PMMA/Al structures have been investigated by means of experimental G-V and C-V measurements at 30 kHz, 100kHz, 500 kHz and 1 MHz in this work. While the values of є′, є″, tanδ and σAC decreased, the values of M′ and M″ increased for these structures when frequency was increased and those of p-Si/ZnO/Al and p-Si/PMMA/Al were comparable with those of p-Si/ZnO/PMMA/Al. The obtained results showed that the values of p-Si/ZnO/PMMA/Al structure were lower than the values of p-Si/ZnO/Al and p-Si/PMMA/Al.


2016 ◽  
Vol 70 (1) ◽  
pp. 19-27
Author(s):  
M Ogi ◽  
S Rysgaard ◽  
DG Barber ◽  
T Nakamura ◽  
B Taguchi

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Author(s):  
A. Ege Engin ◽  
Abdemanaf Tambawala ◽  
Madhavan Swaminathan ◽  
Swapan Bhattacharya ◽  
Pranabes Pramanik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document