A Novel Two-Way Coupled Model for Simulating the Interaction between Fluid flow and Floating Debris

Author(s):  
Yan Xiong ◽  
Qiuhua Liang ◽  
Gang Wang ◽  
Yunsong Cui

<p>Extreme natural hazards such as tsunamis or storm surges have been frequently reported in recent years, posting serious threat to people and their properties. Numerical modelling has provided an indispensable tool to predict these hazardous events and assess their risks. However, most of the current models are based on the assumption of “clean” water and neglect the impact of floating debris as observed in reality. The interactive processes between the floating debris and the background fluid flow have not been well explored and understood. Few reliable modelling tool has been reported for simulating and predicting these complicated processes.</p><p>This work presents a two-way dynamic method to couple a 2D shallow flow hydrodynamic model with a discrete element method (DEM) model for simulating and analyzing the interactive process between fluid flow and floating debris under the extreme hydraulic conditions induced by tsunami or flash flooding. The proposed two-way coupling approach uses the high-resolution water depth and velocity predicted by the hydrodynamic model to quantify the hydrostatic and dynamic forces acting on the floating objects; the corresponding counter forces on the fluid are subsequently taken into account by including extra source terms in the governing shallow water equations (SWEs) of hydrodynamic model. This new approach lifts the limitation of traditional approaches that reply on calibrated empirical parameters to quantify the forces. In developing the resulting coupled model, a multi-sphere method (MSM) is adopted and implemented in the DEM model to simulate solid debris. This method ensures that the interaction of fluid and solid is realistically modelled and the application is not restricted by shapes and sizes of debris.</p><p>The new coupling model is validated against a dam-break flume experiment with three floating objects impacting two fixed obstacles. The predicted results in terms of water depth and floating object displacements in both horizontal and vertical directions compare well with the experimental observations. Furthermore, the new coupled model is computationally accelerated by implementation on modern GPUs to achieve high-performance computing. It provides a robust and innovative modelling tool for the simulation of large-scale flooding process including debris impact and assess the resulting risk.</p><p></p><p></p><p></p>

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2017 ◽  
Vol 21 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Jannis M. Hoch ◽  
Arjen V. Haag ◽  
Arthur van Dam ◽  
Hessel C. Winsemius ◽  
Ludovicus P. H. van Beek ◽  
...  

Abstract. Large-scale flood events often show spatial correlation in neighbouring basins, and thus can affect adjacent basins simultaneously, as well as result in superposition of different flood peaks. Such flood events therefore need to be addressed with large-scale modelling approaches to capture these processes. Many approaches currently in place are based on either a hydrologic or a hydrodynamic model. However, the resulting lack of interaction between hydrology and hydrodynamics, for instance, by implementing groundwater infiltration on inundated floodplains, can hamper modelled inundation and discharge results where such interactions are important. In this study, the global hydrologic model PCR-GLOBWB at 30 arcmin spatial resolution was one-directionally and spatially coupled with the hydrodynamic model Delft 3D Flexible Mesh (FM) for the Amazon River basin at a grid-by-grid basis and at a daily time step. The use of a flexible unstructured mesh allows for fine-scale representation of channels and floodplains, while preserving a coarser spatial resolution for less flood-prone areas, thus not unnecessarily increasing computational costs. In addition, we assessed the difference between a 1-D channel/2-D floodplain and a 2-D schematization in Delft 3D FM. Validating modelled discharge results shows that coupling PCR-GLOBWB to a hydrodynamic routing scheme generally increases model performance compared to using a hydrodynamic or hydrologic model only for all validation parameters applied. Closer examination shows that the 1-D/2-D schematization outperforms 2-D for r2 and root mean square error (RMSE) whilst having a lower Kling–Gupta efficiency (KGE). We also found that spatial coupling has the significant advantage of a better representation of inundation at smaller streams throughout the model domain. A validation of simulated inundation extent revealed that only those set-ups incorporating 1-D channels are capable of representing inundations for reaches below the spatial resolution of the 2-D mesh. Implementing 1-D channels is therefore particularly of advantage for large-scale inundation models, as they are often built upon remotely sensed surface elevation data which often enclose a strong vertical bias, hampering downstream connectivity. Since only a one-directional coupling approach was tested, and therefore important feedback processes are not incorporated, simulated discharge and inundation extent for both coupled set-ups is generally overpredicted. Hence, it will be the subsequent step to extend it to a two-directional coupling scheme to obtain a closed feedback loop between hydrologic and hydrodynamic processes. The current findings demonstrating the potential of one-directionally and spatially coupled models to obtain improved discharge estimates form an important step towards a large-scale inundation model with a full dynamic coupling between hydrology and hydrodynamics.


2021 ◽  
Vol 9 (11) ◽  
pp. 1222
Author(s):  
Yutao Chi ◽  
Zengrui Rong

Disastrous storm surges and waves caused by typhoons are major marine dynamic disasters affecting the east China coast and the Changjiang River Estuary, especially when they occur coincidentally. In this study, a high-resolution wave–current coupled model consisting of ADCIRC (Advanced Circulation) and SWAN (Simulating Waves Nearshore) was established and validated. The model shows reasonable skills in reproducing the surge levels and waves. The storm surges and associated waves are then simulated for 98 typhoons affecting the Changjiang River Estuary over the past 32 years (1987–2018). Two different wind fields, the ERA reanalysis and the ERA-based synthetic wind with a theoretical typhoon model, were adopted to discern the potential uncertainties associated with winds. Model results forced by the ERA reanalysis show comparative skills with the synthetic winds, but differences may be relatively large in specific stations. The extreme surge levels with a 50-year return period are then presented based on the coupled model results and the Gumbel distribution model. Higher risk is presented in Hangzhou Bay and the nearshore region along the coast of Zhejiang. Comparative runs with and without wave effects were conducted to discern the impact of waves on the extreme surge levels. The wave setup contributes to 2–12.5% of the 50-year extreme surge level. Furthermore, the joint exceedance probabilities of high surge levels and high wave height were evaluated with the Gumbel–logistic statistic model. Given the same joint return period, the nearshore region along the coast of Zhejiang is more vulnerable with high surges and large waves than the Changjiang River Estuary with large waves and moderate surges.


2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


Author(s):  
Gordon Bell ◽  
David H Bailey ◽  
Jack Dongarra ◽  
Alan H Karp ◽  
Kevin Walsh

The Gordon Bell Prize is awarded each year by the Association for Computing Machinery to recognize outstanding achievement in high-performance computing (HPC). The purpose of the award is to track the progress of parallel computing with particular emphasis on rewarding innovation in applying HPC to applications in science, engineering, and large-scale data analytics. Prizes may be awarded for peak performance or special achievements in scalability and time-to-solution on important science and engineering problems. Financial support for the US$10,000 award is provided through an endowment by Gordon Bell, a pioneer in high-performance and parallel computing. This article examines the evolution of the Gordon Bell Prize and the impact it has had on the field.


2020 ◽  
Vol 20 (10) ◽  
pp. 2777-2790
Author(s):  
Xianwu Shi ◽  
Pubing Yu ◽  
Zhixing Guo ◽  
Zhilin Sun ◽  
Fuyuan Chen ◽  
...  

Abstract. China is one of the countries that is most seriously affected by storm surges. In recent years, storm surges in coastal areas of China have caused huge economic losses and a large number of human casualties. Knowledge of the inundation range and water depth of storm surges under different typhoon intensities could assist predisaster risk assessment and making evacuation plans, as well as provide decision support for responding to storm surges. Taking Pingyang County in Zhejiang Province as a case study area, parameters including typhoon tracks, radius of maximum wind speed, astronomical tide, and upstream flood runoff were determined for different typhoon intensities. Numerical simulations were conducted using these parameters to investigate the inundation range and water depth distribution of storm surges in Pingyang County considering the impact of seawall collapse under five different intensity scenarios (corresponding to minimum central pressure values equal to 915, 925, 935, 945, and 965 hPa). The inundated area ranged from 103.51 to 233.16 km2 for the most intense typhoon. The proposed method could be easily adopted in various coastal counties and serves as an effective tool for decision-making in storm surge disaster risk reduction practices.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


2020 ◽  
Vol 20 (6) ◽  
pp. 1765-1782 ◽  
Author(s):  
Emanuele Bevacqua ◽  
Michalis I. Vousdoukas ◽  
Theodore G. Shepherd ◽  
Mathieu Vrac

Abstract. Interacting storm surges and high water runoff can cause compound flooding (CF) in low-lying coasts and river estuaries. The large-scale CF hazard has been typically studied using proxies such as the concurrence of storm surge extremes either with precipitation or with river discharge extremes. Here the impact of the choice of such proxies is addressed employing state-of-the-art global datasets. Although they are proxies of diverse physical mechanisms, we find that the two approaches show similar CF spatial patterns. On average, deviations are smaller in regions where assessing the actual CF is more relevant, i.e. where the CF potential is high. Differences between the two assessments increase with the catchment size, and our findings indicate that CF in long rivers (catchment ≳5–10×103 km2) should be analysed using river discharge data. The precipitation-based assessment allows for considering local-rainfall-driven CF and CF in small rivers not resolved by large-scale datasets.


Author(s):  
Reshmi Raveendran ◽  
D. Shanthi Saravanan

With the advent of High Performance Computing (HPC) in the large-scale parallel computational environment, better job scheduling and resource allocation techniques are required to deliver Quality of Service (QoS). Therefore, job scheduling on a large-scale parallel system has been studied to minimize the queue time, response time, and to maximize the overall system utilization. The objective of this paper is to touch upon the recent methods used for dynamic resource allocation across multiple computing nodes and the impact of scheduling algorithms. In addition, a quantitative approach which explains a trend line analysis on dynamic allocation for batch processors is depicted. Throughout the survey, the trends in research on dynamic allocation and parallel computing is identified, besides, highlights the potential areas for future research and development. This study proposes the design for an efficient dynamic scheduling algorithm based on the Quality-of-Service. The analysis provides a compelling research platform to optimize dynamic scheduling of jobs in HPC.


2020 ◽  
Author(s):  
Thomas Poulet ◽  
Ulrich Kelka ◽  
Stefan Westerlund ◽  
Luk Peeters

<p>The topological and geometrical description of fault and fracture networks is an essential first step in any investigation of fractured or faulted media. The spatial arrangement, density, connectivity, and geometry of the discontinuities strongly impact the physical properties of the media such as resilience and permeability. Obtaining reliable metrics for characterizing fault and fracture networks is of interest for mining engineering, reservoir characterization, groundwater management, and studies on the regional fluid flow history. During large-scale studies, we mostly rely on two-dimensional lineaments obtained through structural mapping, outcrop analysis, or remote sensing. An efficient and widely applicable framework for discontinuity network characterization should therefore be based on the analysis of the frequently available two-dimensional data sets.</p><p>Here, we present an automated framework for efficient and robust characterization of the geometric and topologic parameters of discontinuity networks. The geometry of the lineaments is characterised based on orientation, length, and sinuosity. The underlying distribution of these parameters are determined, and representative probability density functions are reported. The connection between the geometric parameters is validated, e.g. correlation between orientation and length. The spatial arrangement is determined by classical line- and window-sampling, by assessing the fractal dimension, and via graph-based topology analysis.</p><p>In addition to the statistical analysis of lineament networks, we show how the graph data structure can be utilized for further characterization by linking it to raster data such as magnetic, gravimetric, or elevation. This procedure not only yields an additional means for lineament characterization but also allows users to assess dominant pathways based, for instance, on hydraulic gradients. We demonstrate the applicability of our algorithm on synthetic data sets and real-world case studies on mapped fault and fracture networks.</p><p>We finally show how our framework can also be utilized to design detailed numerical studies on the fluid flow properties of analysed networks by conditioning mesh refinement on the type and number of intersections. In addition, due to known scaling relationships our framework can help to determine appropriate parameters for the simulations. We provide examples of statistically parametrized fluid flow simulations in natural discontinuity networks and show the impact of conceptualizing the lineaments as conduits, barriers or conduit-barrier systems.</p>


Sign in / Sign up

Export Citation Format

Share Document