Global Ion Density Distributions Observed by Advanced Ionospheric Probe Onboard FORMOSAT-5 Satellite

Author(s):  
Chi-Kuang Chao

<p>A FORMOSAT-5 satellite has been launched on 25 August 2017 CST into a 98.28° inclination sun-synchronous circular orbit at 720 km altitude along the 1030/2230 local time sectors.  The orbital coverage provides a great opportunity to survey terrestrial ionosphere from equatorial to polar region every two days.  Advanced Ionospheric Probe (AIP) is a piggyback science payload developed by National Central University for the FORMOSAT-5 satellite to measure ionospheric plasma concentrations, velocities, and temperatures.  It is also capable of measuring ionospheric plasma density irregularities at a sample rate up to 8,192 Hz over a wide range of spatial scales.  In this poster, global ion density distributions observed by FORMOSAT-5/AIP in the pre-midnight sector can be averaged monthly and seasonally from in-situ measurement since November 2017.  Wave-3 and wave-4 patterns are clearly detected from the distributions and varied with season and solar cycle.  It is adversely indicated that FORMOSAT-5/AIP can provide high quality data to identify long-term ionospheric ion density variations.</p>

2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


Author(s):  
MOHAMED CHERIET

This paper presents a new methodology to extract visual data contained in noisy gray-level images such as mail envelopes. Since the intensity changes may occur over a large range of spatial scales in these and other like images, we adopt the multiscale approach to extract good quality data that might be used in further processing and recognition processes. We have already shown in a previous paper its effective use in full data extraction. In this paper, we will give an advanced formalism of this result, referred to as a top–down approach. Then, we will present a new and opposite approach, referred to as a bottom–up approach. The differences and characteristics of both approaches are highlighted. Experiments have been conducted on real life data from the data base provided by CEDAR at SUNY Buffalo, to assess the effectiveness of the proposed paradigm; this reveals its improved robustness and accuracy over the top–down approach; such a result might be useful for a wide range of applications in the field of image processing and enhancement.


2021 ◽  
Author(s):  
Mendy van der Vliet ◽  
Richard de Jeu ◽  
Jaap Schellekens ◽  
Robin van der Schalie

<p>Environmental restoration has the potential to constrain human-induced land degradation, loss of biodiversity and climate change. Although the practise is increasingly integrated into natural resource and climate mitigation strategies, scientific studies underline that the effectiveness and impact of these restoration projects are currently difficult to monitor and assess. In order to measure the global community’s progress towards the Sustainable Development Goals (SDGs), restoration interventions need to be assessed in a systematic and objective manner. However, the long-term and high-quality data records that are required for this are often lacking in both time and space. Satellite data products that can detect changes in land use, surface temperature and hydrological conditions over time in a consistent manner, can fill this gap.</p><p>Over the last few decades, the scientific community has made great efforts to merge different satellites into multi-decadal historical datasets of climate variables. Examples of such long-term climate data records (CDRs) are the soil moisture (from 1978 onwards), land surface temperature (since 1995) and land cover (since 2008) datasets of the European Space Agency Climate Change Initiative (ESA CCI). These consistent datasets, combined with near real-time observations, offer a great opportunity to quantify and monitor the impact of restoration interventions on degraded landscapes. In order to monitor restoration projects affecting areas smaller than the native resolutions of these datasets (up to approximately 25 km), downscaling techniques can be used to increase the spatial level of detail (approximately in the 0.1-1 km range). The resulting monitoring service could help managers of restoration programs and green investment funds to steer decisions and communicate on effectiveness towards their donors. </p><p>The satellite datasets were investigated in space and time in relation to the effects of the restoration projects. For each restoration project area, several surface conditions were monitored and compared to those in an unaffected control area to detect and attribute the effects of the restoration program. The present work focuses on several case studies in which the relevance of satellite-based CDRs for the end users’ operational practises related to impact monitoring is assessed in the context of the SDGs 12 (Responsible production and consumption), 13 (Life on land) and 15 (Climate action).</p>


2020 ◽  
Author(s):  
Yi-Wun Chen ◽  
Chi-Kuang Chao

<p>  A remote sensing satellite, FORMOSAT-5, developed by National Space Organization (NSPO) carried a piggyback science payload, Advanced Ionospheric Payload (AIP), for space weather and seismo-ionospheric precursor study.  To meet the science requirements, AIP could be operated in different measurement modes to obtain various plasma parameters.  The first AIP measurement was performed on 7 September 2017 to obtain the first-orbit data and started routine operation in November the same year.  Global ion density and ion velocity/temperature distributions were available every two days and four days, respectively.  AIP was regularly operated in a sampling rate 1,024 Hz to maximize useful science data.  In this poster, global occurrence rates of pre-midnight low-latitude ionospheric plasma density irregularities will be shown from AIP science data collected since winter 2017.  The results indicate that seasonal variations of the occurrence rates during the solar minimum (2017/11-2019/12) are distributed very similar to but have lower magnitudes than those observations by ROCSAT-1/Ionospheric Plasma and Electrodynamics Instrument dataset (1999-2004) during solar maximum.</p>


MRS Bulletin ◽  
2008 ◽  
Vol 33 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Daryl P. Wernette ◽  
Juewen Liu ◽  
Paul W. Bohn ◽  
Yi Lu

AbstractTrace contaminant detection in water represents both a grand challenge and great opportunity for materials scientists and engineers. The recent discovery that functional DNA can be obtained to bind selectively to a wide range of contaminants makes it possible to interface these molecules with nanoscale materials, such as gold nanoparticles and quantum dots, to transform the molecular reorganization between functional DNA and contaminants into physically detectable colorimetric and fluorescent signals. Micro- and nanofluidic devices have also played a critical role in lowering the detection limits of functional-DNA sensors, promoting sensor regeneration and thus improving sensor performance and allowing long-term unattended monitoring of water quality.


2020 ◽  
pp. 66-73
Author(s):  
A. Simonova ◽  
S. Chudakov ◽  
R. Gorenkov ◽  
V. Egorov ◽  
A. Gostry ◽  
...  

The article summarizes the long-term experience of practical application of domestic breakthrough technologies of preventive personalized medicine for laboratory diagnostics of a wide range of socially significant non-infectious diseases. Conceptual approaches to the formation of an integrated program for early detection and prevention of civilization diseases based on these technologies are given. A vision of the prospects for the development of this area in domestic and foreign medicine has been formed.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2017 ◽  
Vol 68 (3) ◽  
pp. 599-601
Author(s):  
Dan Paul Stefanescu ◽  
Oana Roxana Chivu ◽  
Claudiu Babis ◽  
Augustin Semenescu ◽  
Alina Gligor

Any economic activity carried out by an organization, can generate a wide range of environmental implications. Particularly important, must be considered the activities that have a significant negative effect on the environment, meaning those which pollute. Being known the harmful effects of pollution on the human health, the paper presents two models of utmost importance, one of the material environment-economy interactions balance and the other of the material flows between environmental factors and socio-economic activities. The study of these models enable specific conditions that must be satisfied for the economic processes friendly coexist to the environment for long term, meaning to have a minimal impact in that the residues resulting from the economic activity of the organization to be as less harmful to the environment.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 436E-436
Author(s):  
Martin P.N. Gent

The persistence of effects of paclobutrazol or uniconazol on stem elongation was determined for several years after large-leaf Rhododendron and Kalmia latifolia were treated with a single-spray application of these triazol growth-regulator chemicals. Potted plants were treated in the second year from propagation, and transplanted into the field in the following spring. The elongation of stems was measured in the year of application and in the following 2 to 4 years. Treatments with a wide range of doses were applied in 1991, 1992, or 1995. For all except the most-dilute applications, stem elongation was retarded in the year following application. At the highest doses, stem growth was inhibited 2 years following application. The results could be explained by a model of growth regulator action that assumed stem elongation was inversely related to amount of growth regulator applied. The dose response coefficient for paclobutrazol was less than that for uniconazol. The dose that inhibited stem elongation one-half as much as a saturating dose was about 0.5 and 0.05 mg/plant, for paclobutrazol and uniconazol, respectively. The dose response coefficient decreased exponentially with time after application, with an exponential time constant of about 2/year. The model predicted a dose of growth regulator that inhibited 0.9 of stem elongation immediately after application would continue to inhibit 0.5 of stem elongation in the following year.


Sign in / Sign up

Export Citation Format

Share Document