Estimation and validation of electric power output from a fixed-type floating photovoltaic system

Author(s):  
Jangwon Suh ◽  
Sungmin Kim ◽  
Yosoon Choi

<p>An accurate estimation of electric power production (EPP) is a crucial first step to design a floating photovoltaics (PV) project. This study estimates the EPP of a floating PV system and validates the results by comparing with the actual EPP observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPPs. Three-year average observed EPPs (2012, 2013, and 2015) were used as reference values for the validation. The results showed the seasonal EPPs were the highest in spring and the lowest in winter. The monthly estimated EPPs were lower than the monthly observed EPPs. These results are ascribed to the fact the SAM was unable to consider the natural cooling effect of the water environment on the PV module. The error results showed it was possible to estimate the monthly EPPs with an error of less than 15% simply by simulation. However, it may possible to estimate the monthly EPPs with an error of approximately 9% when considering empirical results: The floating PV efficiency was approximately 1.1 times (110%) the overland PV efficiency. This indicates that the approach of using empirical results can provide reliable monthly estimation of EPP in feasibility assessment stage of floating PV projects.</p>

2019 ◽  
Vol 12 (1) ◽  
pp. 276 ◽  
Author(s):  
Jangwon Suh ◽  
Yonghae Jang ◽  
Yosoon Choi

An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.


Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2012 ◽  
Vol 517 ◽  
pp. 791-796
Author(s):  
Cheng Yao Wang ◽  
Yin Xu ◽  
Yao Ming Zhang ◽  
Yong Ming Hua

In this paper, a concentrating photovoltaic (CPV) system with low ratio was successfully developed. In the design of CPV concentrator, a quasi-parabolic reflector was adopted. With the research of basic optical mechanisms, a mathematic model was built with the corresponding program. In addition, the width of light spot was analyzed with considering the symmetry of tracking errors and glass deformation in manufacture to identify reasonable values. The system was designed with a reflector of 10 flat mirrors, which has a geometrical concentration ratio of 8.18 and a flux concentration ratio of 5. The concentrating photovoltaic system was investigated experimentally under the various weather conditions. The output voltage profile and the output power of the flat PV system and the CPV system were presented to analyze the concentration ratio and the electric power. And the influence of soiling was also discussed. The results showed that the performance of tracking system was good in a clear day. Compared to the flat cell with the same system, the electric power was nearly increased by 4-5 times.


2018 ◽  
Vol 8 (10) ◽  
pp. 1761 ◽  
Author(s):  
Samer Alsadi ◽  
Tamer Khatib

The photovoltaic (PV) generating system has high potential, since the system is clean, environmental friendly and has secure energy sources. There are two types of PV system, which are grid connected and standalone systems. In the grid connected photovoltaic system (GCPV), PV generator supplies power to the grid, whether or not the whole or a portion of the generated energy will be used to supply load demands. Meanwhile, the standalone photovoltaic system (SAPV) is used to fulfil a load demand that close to its point of use. These days, many researchers study in term of optimization sizing of photovoltaic system, in order to select optimum number of PV modules, inverter, battery storage capacity, and tilt angle. Based on that, this review aims to give explanations on approaches done by previous researchers in order to find ultimate combinations for design parameters. Moreover, the paper discusses on modelling of PV system components, which includes PV panels’ output power estimation and battery system. Finally, simulation softwares that used as sizing tools in previous studies are reviewed and studied.


2011 ◽  
Vol 141 ◽  
pp. 103-108
Author(s):  
Bao Jie Xu ◽  
Mao Wang

Effective monitoring of photovoltaic system can make the operation condition of the system easy to know, and can also provide powerful data support for the further research. General monitoring method is to confirm the state of photovoltaic system by monitor the inverter unit’s some parameters relevant. This paper focuses on the monitoring of PV module, in order to get more accurate data, and then improve the efficiency of the PV system. Achieve the purpose of monitoring by the wireless sensor network constructed by sensor nodes that is designed proper for the acquisition of solar modules’ parameters data relevant, the monitoring application software also has been completed. The results indicate that the monitoring system who achieves the design requirements and expectations well, also with the characteristics of cost saving and convenient to set up has promising prospects.


Author(s):  
K. Burhanudin ◽  
N.A. Kamarzaman ◽  
A.A.A. Samat ◽  
A.I. Tajudin ◽  
S.S. Ramli ◽  
...  

Power-Voltage (P-V) curve and Current-Voltage (I-V) curve determine the performance of the PV system. In this work, the arrangements of the PV module were reconstructed by adding the number of PV module in 3 strings configuration from 5 to 45. This method enhance the performance of the PV system as it able to show the characteristic of the P-V and I-V curve during partial shading and maximum irradiance despite higher number of PV panel. This study focuses on improving the PV array configuration and simulation speed of the PV panel. The simulation of small size PV array is possible, but the problem lies when the number of string and PV module used increases. New PV array configuration is flexible and easy to add string and increase the number of PV module. PV array configuration was modeled using MATLAB/SIMULINK software.


Author(s):  
Amina Mahmoud Shakir ◽  
Siba Monther Yousif ◽  
Anas Lateef Mahmood

Bifacial photovoltaic (PV) module can gain 30% more energy compared to monofacial if a suitable location were chosen. Iraq (a Middle East country) has a variable irradiation level according to its geographic coordinates, thus, the performance of PV systems differs. This paper an array (17 series, 13 parallel) was chosen to produce 100 kWp for an on-grid PV system. It investigates the PV system in three cities in Iraq (Mosul, Baghdad, and Basrah). Effect of albedo factor, high and pitch of the bifacial module on energy yield have been studied using PVsyst (software). It has been found that the effect is less for a pitch greater than 6 m. The energy gained from bifacial and monofacial PV system module in these cities shows that Mosul is the most suitable for installing both PV systems followed by Baghdad and lastly Basrah. However, in Basrah, the bifacial gain is 12% higher in the energy than monofacial as irradiation there is higher than the other locations, especially for elevation above 1.5 m. Moreover, the cost of bifacial array is 7.23% higher than monofacial, but this additional cost is acceptable since the bifacial gain is about 11.3% higher energy compared to the monofacial.


2016 ◽  
Vol 26 (1) ◽  
pp. 115
Author(s):  
Harry A. Rivera Tito ◽  
María E. Quintana Caceda ◽  
Vanessa Teixeira Roth

RESUMENEn este trabajo exponemos un método para abastecer de energía eléctrica a un grupo de personas que habitan en el distrito de San Borja – Lima, a través de un Sistema Fotovoltaico (SFV), lo cual no es común en la zona. Esto ayudará a disminuir los niveles de emisión de dióxido de carbono (CO2) a la atmósfera. Se ha determinado mediante el Atlas Solar del Perú que la potencia solar en la región de la costa alcanza al día un promedio, en el mes de marzo, de 6 a 6,5 kW.h/m2, si convertimos este dato a energía, es equivalente de 21,6 a 23,4 MJ/m2, lo cual es provechoso para el proyecto.Palabras clave- Energía solar, irradiancia, sistema fotovoltaico y energía eléctrica. ABSTRACTThrough this work we explain a method to provide electrical power to a group of people living in the district of San Borja - Lima, through a PV system, which is not common in the area. This would help to reduce emission levels of carbon dioxide (CO2) to the atmosphere. It has been determined by the Solar Atlas of Peru that the coast region solar power reaches 6 to 6,5 kW.h/m2 per day, average in the month of March, if we convert this data to energy is equivalent to 21,6 to 23,4 MJ/m2, which is of great advantage for the proyect.KeyWords.- Solar energy, irradiance, photovoltaic system and electric power.


2015 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Juan Ernesto Wyss Porras ◽  
Sususmu Shimada ◽  
Jun Yoshino ◽  
Tomonao Kobayashi

The impact of the installation of a large-scale photovoltaic (PV) system to the electric power grid management is analyzed numerically in this series of works. In this part 1, the solar irradiance at the target country, Guatemala, is evaluated with a weather forecasting model, and PV energy potential is estimated. From the computed potential distribution, the appropriate area for installation of a large-scale PV system is selected. This area is where the solar irradiance is large and the energy consumption regions are close by. The optimal tilted angle of the PV panels is proposed as well from the PV output simulation. The time series data of the PV output is also evaluated in this part, and it will be applied to the analysis of the impact of the PV installation to the electric power grid management in the following part of this series of works.


Sign in / Sign up

Export Citation Format

Share Document