The impact of perturbations to tropical aerosols and their precursors on local and remote climates

Author(s):  
Chris Wells ◽  
Apostolos Voulgarakis ◽  
Matt Kasoar

<p>Aerosols are a major climate forcer, but their historical effect has the largest uncertainty of any forcing, and so their mechanisms and impacts must be better understood. Due to their short lifetime, aerosols have large impacts near their emission region, but they also have effects on the climate in remote locations. In recent years, studies have investigated the influences of regional aerosols on global and regional climate, and the mechanisms that lead to remote responses to their inhomogeneous forcing. However, there has been little work on the influence of emissions from the tropics, as the aforementioned studies typically focused only on northern mid-latitude pollution effects. This work uses the new UK Earth System Model (UKESM1) to investigate the atmospheric composition and climate effects of tropical aerosols and aerosol precursor emissions. We performed three idealised perturbation experiments in which a) tropical SO<sub>2</sub> emissions were multiplied by a factor of 10; b) tropical biomass burning carbonaceous aerosol emissions were multiplied by 10; and c) tropical biomass burning carbonaceous aerosol emissions were entirely removed. Impacts on radiation fluxes, temperature, circulation and precipitation are investigated, both over the emission regions, where microphysical effects dominate, and remotely, where dynamical influences become more relevant. Increasing tropical SO<sub>2</sub> emissions causes a global cooling, and the asymmetric forcing (stronger negative forcing in the Northern Hemisphere Tropics) drives a southward shift of the intertropical convergence zone (ITCZ). The experiment with the large increase in tropical biomass burning organic carbon (OC) and black carbon (BC) features a net warming globally, and a local cooling in locations where the aerosol load increases the most, since OC and BC reduce radiation at the surface locally, causing cooling. However, whereas OC scatters radiation with a negative forcing, BC has a warming effect since it reduces the planetary albedo, and this warming wins out on the global scale. The forcing is asymmetric, but changes sign between seasons as biomass burning in Africa shifts across the Equator, driving a more complex response of the ITCZ. The removal of biomass burning OC and BC leads to opposite effects to the 10x increase, but with a smaller magnitude, and with dynamical changes playing a more important role than microphysical ones, relative to the larger perturbations. Using the Shared Socioeconomic Pathway scenarios (SSPs), transient future experiments have also been performed, testing the effect of Africa following a relatively more polluting route (SSP3-RCP7.0) to the rest of the world (SSP1-RCP1.9), relative to a global SSP1-RCP1.9 control. Preliminary results from this analysis will also be presented.</p>

2021 ◽  
Author(s):  
Chris Wells ◽  
Apostolos Voulgarakis

<p>Aerosols are a major climate forcer, but their historical effect has the largest uncertainty of any forcing; their mechanisms and impacts are not well understood. Due to their short lifetime, aerosols have large impacts near their emission region, but they also have effects on the climate in remote locations. In recent years, studies have investigated the influences of regional aerosols on global and regional climate, and the mechanisms that lead to remote responses to their inhomogeneous forcing. Using the Shared Socioeconomic Pathway scenarios (SSPs), transient future experiments were performed in UKESM1, testing the effect of African emissions following the SSP3-RCP7.0 scenario as the rest of the world follows SSP1-RCP1.9, relative to a global SSP1-RCP1.9 control. SSP3 sees higher direct anthropogenic aerosol emissions, but lower biomass burning emissions, over Africa. Experiments were performed changing each of these sets of emissions, and both. A further set of experiments additionally accounted for changing future CO<sub>2</sub> concentrations, to investigate the impact of CO<sub>2</sub> on the responses to aerosol perturbations. Impacts on radiation fluxes, temperature, circulation and precipitation are investigated, both over the emission region (Africa), where microphysical effects dominate, and remotely, where dynamical influences become more relevant. </p>


1998 ◽  
Vol 353 (1365) ◽  
pp. 131-140 ◽  
Author(s):  
D. J. Beerling ◽  
F. I. Woodward ◽  
M. R. Lomas ◽  
M. A. Wills ◽  
W. P. Quick ◽  
...  

Geochemical models of atmospheric evolution predict that during the late Carboniferous, ca . 300 Ma, atmospheric oxygen and carbon dioxide concentrations were 35% and 0.03%, respectively. Both gases compete with each other for ribulose–1,5–bisphosphate carboxylase/oxygenase–the primary C–fixing enzyme in C 3 land plants: and the absolute concentrations and the ratio of the two in the atmosphere have the potential to strongly influence land–plant function. The Carboniferous therefore represents an era of potentially strong feedback between atmospheric composition and plant function. We assessed some implications of this ratio of atmospheric gases on plant function using experimental and modelling approaches. After six weeks growth at 35% O 2 and 0.03% carbon dioxide, no photosynthetic acclimation was observed in the woody species Betula pubescens and Hedera helix relative to those plants grown at 21% O 2 . Leaf photosynthetic rates were 29% lower in the high O 2 environment compared to the controls. A global–scale analysis of the impact of the late Carboniferous climate and atmospheric composition on vegetation function was determined by driving a process–based vegetation–biogeochemistry model with a Carboniferous global palaeoclimate simulated by the Universities Global Atmospheric Modelling Programme General Circulation Model. Global patterns of net primary productivity, leaf area index and soil carbon concentration for the equilibrium model solutions showed generally low values everywhere, compared with the present day, except for a central band in the northern land mass extension of Gondwana, where high values were predicted. The areas of high soil carbon accumulation closely match the known distribution of late Carboniferous coals. Sensitivity analysis with the model indicated that the increase in O 2 concentration from 21% to 35% reduced global net primary productivity by 18.7% or by 6.3 GtC yr –1 . Further work is required to collate and map at the global scale the distribution of vegetation types, and evidence for wildfires, for the late Carboniferous to test our predictions.


2020 ◽  
Author(s):  
Nikos Daskalakis ◽  
Maria Kanakidou ◽  
Mihalis Vrekoussis ◽  
Laura Gallardo

<p>Carbon Monoxide (CO) is an important atmospheric trace gas, and among the key O<sub>3</sub> precursors in the troposphere, alongside NO<sub>x</sub> and VOCs. It is among the most important sinks of OH radical in the atmosphere, which controls lifetime of CH<sub>4</sub> — a major greenhouse gas. Biomass burning sources contribute about 25% to the global emissions of CO, with the remaining CO being either emitted from anthropogenic sources, or being chemically formed in the atmosphere. Because of CO tropospheric lifetime is about two months; it can be transported in the atmosphere thus its sources have a hemispheric impact on atmospheric composition.</p><p>The extent of the impact of biomass burning to remote areas of the world through long range transport is here investigated using the global 3-dimensional chemistry transport model TM4-ECPL. For this, tagged biomass burning CO tracers from the 13 different HTAP (land) source regions are used in the model in order to evaluate the contribution of each source region to the CO concentrations in the 170 HTAP receptor regions that originate from biomass burning. The global simulations cover the period 1994—2015 in order to derive climatological transport patterns for CO and assess the contribution of each of the source regions to each of the receptor regions in the global troposphere. The CO simulations are evaluated by comparison with satellite observations from MOPITT and ground based observations from WDCGG. We show the significant impact of biomass burning emissions to the most remote regions of the world.</p>


2008 ◽  
Vol 8 (13) ◽  
pp. 3483-3508 ◽  
Author(s):  
C. Senten ◽  
M. De Mazière ◽  
B. Dils ◽  
C. Hermans ◽  
M. Kruglanski ◽  
...  

Abstract. Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.


2021 ◽  
Vol 21 (14) ◽  
pp. 11257-11288
Author(s):  
Simon Rosanka ◽  
Bruno Franco ◽  
Lieven Clarisse ◽  
Pierre-François Coheur ◽  
Andrea Pozzer ◽  
...  

Abstract. The particularly strong dry season in Indonesia in 2015, caused by an exceptionally strong El Niño, led to severe peatland fires resulting in high volatile organic compound (VOC) biomass burning emissions. At the same time, the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the Intertropical Convergence Zone (ITCZ) efficiently transported the resulting primary and secondary pollutants to the upper troposphere and lower stratosphere (UTLS). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS and investigate the effect of in-cloud oxygenated VOC (OVOC) oxidation during such a strong pollution event. This is achieved by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). By comparing modelled columns of the biomass burning marker hydrogen cyanide (HCN) and carbon monoxide (CO) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI), we find that EMAC properly captures the exceptional strength of the Indonesian fires. In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This has a direct impact on the oxidation capacity, resulting in the largest regional reduction in the hydroxyl radical (OH) and nitrogen oxides (NOx). While an increase in ozone (O3) is predicted close to the peatland fires, simulated O3 decreases in eastern Indonesia due to particularly high phenol concentrations. In the ASMA and the ITCZ, the upward transport leads to elevated VOC concentrations in the lower stratosphere, which results in the reduction of OH and NOx and the increase in the hydroperoxyl radical (HO2). In addition, the degradation of VOC emissions from the Indonesian fires becomes a major source of lower stratospheric nitrate radicals (NO3), which increase by up to 20 %. Enhanced phenol levels in the upper troposphere result in a 20 % increase in the contribution of phenoxy radicals to the chemical destruction of O3, which is predicted to be as large as 40 % of the total chemical O3 loss in the UTLS. In the months following the fires, this loss propagates into the lower stratosphere and potentially contributes to the variability of lower stratospheric O3 observed by satellite retrievals. The Indonesian peatland fires regularly occur during El Niño years, and the largest perturbations of radical concentrations in the lower stratosphere are predicted for particularly strong El Niño years. By activating the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened. Global models that neglect in-cloud OVOC oxidation tend to overestimate the impact of such extreme pollution events on the atmospheric composition.


2020 ◽  
Author(s):  
Huihui Wu ◽  
Jonathan W. Taylor ◽  
Kate Szpek ◽  
Justin Langridge ◽  
Paul I. Williams ◽  
...  

Abstract. Seasonal biomass burning (BB) from June to October in central and southern Africa leads to absorbing aerosols being transported over the south Atlantic Ocean every year, and contributes significantly to the regional climate forcing. The vertical distribution of submicron aerosols and their properties were characterized over the remote southeast Atlantic for the first time, using airborne in-situ measurements made during the CLoud-Aerosol-Radiation Interactions and Forcing for Year 2017 (CLARIFY-2017) campaign. BB aerosols were intensively observed in the region surrounding Ascension Island, in the marine boundary layer (MBL) and free troposphere (FT) up to 5 km. We show that the aerosols had undergone a significant aging process during > 7 days transit from source, as indicated by highly oxidized organic aerosol and thickly coated black carbon (BC). The highly aged BB aerosols in the CLARIFY region were also especially rich in BC compared with those from other regions. We also found significant vertical variation in the single scattering albedos (SSA) of these aerosols, as a function of relative chemical composition and size. The lowest SSA was generally in the low FT layer around 2000 m altitude (medians: 0.83 at 405 nm and 0.80 at 658 nm). This finding is important since it means that BB aerosols across the east Atlantic region are more absorbing than is currently represented in climate models. Furthermore, in the FT, we show that SSA increased with altitude and this was associated with an enhanced inorganic nitrate mass fraction and aerosol size. This likely results from increased partitioning to the existing particles at higher altitude with lower temperature and higher relative humidity. After entrainment into the BL, aerosols were generally smaller in size than were observed in the FT, and had a larger fraction of scattering material with resultant higher average dry SSA, mostly due to marine emissions and aerosol removal by drizzle. Our results provide unique observational constraints on aerosol parameterizations used in modelling regional radiation interactions over this important region. We recommend that future work should consider the impact of this vertical variability on climate models.


2011 ◽  
Vol 11 (6) ◽  
pp. 16611-16637 ◽  
Author(s):  
K. A. Tereszchuk ◽  
G. González Abad ◽  
C. Clerbaux ◽  
D. Hurtmans ◽  
P.-F. Coheur ◽  
...  

Abstract. To further our understanding of the effects of biomass burning emission on atmospheric composition, we report measurements of trace species from biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C2H2, C2H6, CH3OH, CH4, CO, H2CO, HCN, HCOOH, HNO3, NO, NO2, N2O5, O3, OCS and SF6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, much of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission region. Further knowledge of the aging of biomass burning emission in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to classify them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered. Emission factors are derived and compared to airborne measurements of biomass burning from numerous ecosystems to validate the ACE-FTS data.


2016 ◽  
Author(s):  
Shan Zhou ◽  
Sonya Collier ◽  
Daniel A. Jaffe ◽  
Nicole L. Briggs ◽  
Jonathan Hee ◽  
...  

Abstract. Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) coupled with a thermodenuder at the Mt. Bachelor Observatory (MBO, ~ 2.8 km above sea level) to characterize the impact of wildfire emissions on aerosol loading and properties in the Pacific Northwest region of the United States. MBO represents a remote background site in the western U.S. and it is frequently influenced by transported wildfire plumes during summer. Very clean conditions were observed at this site during periods without BB influence where the 5-min average (±1σ) concentration of non-refractory submicron aerosols (NR-PM1) was 3.7 ± 4.2 μg m−3. Aerosol concentration increased substantially (reaching up to 210 µg m−3 of NR-PM1) for periods impacted by transported BB plumes and aerosol composition was overwhelmingly organic. Based on Positive Matrix Factorization (PMF) of the HR-AMS data, three types of BB organic aerosol (BBOA) were identified, including a fresh, semivolatile BBOA-1 (O/C = 0.35; 20 % of OA mass) that correlated well with ammonium nitrate, an intermediately oxidized BBOA-2 (O/C = 0.60; 17 % of OA mass), and a highly oxidized BBOA-3 (O/C = 1.06; 31 % of OA mass) that showed very low volatility with only ~ 40 % mass loss at 200 °C. The remaining 32 % of the organic aerosol (OA) mass was attributed to a boundary layer (BL) OOA (BL-OOA; O/C = 0.69) representing OA influenced by BL dynamics and a low-volatility oxygenated OA (LV-OOA; O/C = 1.09) representing regional free troposphere aerosol. The mass spectrum of BBOA-3 resembled that of LV-OOA and had negligible contributions from the HR-AMS BB tracer ions – C2H4O2+ (m/z = 60.021) and C3H5O2+ (m/z = 73.029). This finding highlights the possibility that the influence of BB emission could be underestimated in regional air masses where highly oxidized BBOA (e.g. BBOA-3) might be a significant aerosol component. We also examined OA chemical evolution for persistent BB plume events originating from a single fire source and found that longer solar radiation led to higher mass fraction of the chemically aged BBOA-2 and BBOA-3 and more oxidized aerosol. However, an analysis of the enhancement ratios of OA relative to CO (ΔOA/ΔCO) showed little difference between BB plumes transported primarily at night versus during the day, despite evidence of substantial chemical transformation in OA induced by photo-oxidation. These results indicate negligible net OA production with photo-oxidation for wildfire plumes observed in this study, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization.


2018 ◽  
Vol 11 (10) ◽  
pp. 4103-4116 ◽  
Author(s):  
Liye Zhu ◽  
Maria Val Martin ◽  
Luciana V. Gatti ◽  
Ralph Kahn ◽  
Arsineh Hecobian ◽  
...  

Abstract. Biomass burning is a significant source of trace gases and aerosols to the atmosphere, and the evolution of these species depends acutely on where they are injected into the atmosphere. GEOS-Chem is a chemical transport model driven by assimilated meteorological data that is used to probe a variety of scientific questions related to atmospheric composition, including the role of biomass burning. This paper presents the development and implementation of a new global biomass burning emissions injection scheme in the GEOS-Chem model. The new injection scheme is based on monthly gridded Multi-angle Imaging SpectroRadiometer (MISR) global plume-height stereoscopic observations in 2008. To provide specific examples of the impact of the model updates, we compare the output from simulations with and without the new MISR-based injection height scheme to several sets of observations from regions with active fires. Our comparisons with Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft observations show that the updated injection height scheme can improve the ability of the model to simulate the vertical distribution of peroxyacetyl nitrate (PAN) and carbon monoxide (CO) over North American boreal regions in summer. We also compare a simulation for October 2010 and 2011 to vertical profiles of CO over the Amazon Basin. When coupled with larger emission factors for CO, a simulation that includes the new injection scheme also better matches selected observations in this region. Finally, the improved injection height improves the simulation of monthly mean surface CO over California during July 2008, a period with large fires.


Sign in / Sign up

Export Citation Format

Share Document