Fault slip envelope: A new parametric investigation tool for fault system strength and slip

Author(s):  
Roger Soliva ◽  
Frantz Maerten ◽  
Laurent Maerten ◽  
Jussi Mattila

<p>The fact that inherited fault systems show strong variability in their 3D shape provides good reasons to consider the strength of the Earth’s brittle crust as variably anisotropic. In this work we quantify this strength anisotropy as a function of fault system complexity by combining 3D boundary element model, frictional slip theory and fast iterative computation method. This method allows to analyze together a very large number of scenarios of stress and fault mechanical properties variations through space and time. Using both synthetic and real fault system geometries we analyze a very large number of numerical simulations (125,000) to define for the first time macroscopic rupture envelopes for fault systems, referred to as “fault slip envelopes”. Fault slip envelopes are defined using variable friction, cohesion and stress state, and their shape is directly related to the fault system 3D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes shows that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggests that Olkiluoto fault system has a better probability to slip under the present day Andersonian thrust stress regime, than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows to quantify the anisotropy of strength and probability of slip of 3D real fault networks as a function of a wide range of possible geological conditions an mechanical properties. This significantly helps to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquakes hazard studies, geological storage, geothermal resources along faults and fault leaks/seals in geological reservoirs.</p>

2019 ◽  
Author(s):  
Roger Soliva ◽  
Frantz Maerten ◽  
Laurent Maerten ◽  
Jussi Mattila

Abstract. By combining 3D boundary element model, frictional slip theory and fast computation method, we propose a new tool to improve fault slip analysis that allows to analyze a very large number of scenarios of stress and fault mechanical properties variations through space and time. Using both synthetic and real fault system geometries we analyze a very large number of numerical simulations (125,000) using fast iterative method to define for the first time macroscopic rupture envelopes for fault systems, referred to as “fault slip envelopes”. Fault slip envelopes are defined using variable friction, cohesion and stress state, and their shape is directly related to the fault system 3D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes shows that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggests that Olkiluoto fault system has a better probability to slip under the present day Andersonian thrust stress regime, than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows to quantify the anisotropy of strength and probability of slip of 3D real fault networks as a function of a wide range of possible geological conditions an mechanical properties. This significantly helps to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquakes hazard studies, geological storage, geothermal resources along faults and fault leaks/seals in geological reservoirs.


Solid Earth ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 1141-1154
Author(s):  
Roger Soliva ◽  
Frantz Maerten ◽  
Laurent Maerten ◽  
Jussi Mattila

Abstract. By combining a 3-D boundary element model, frictional slip theory, and fast computation method, we propose a new tool to improve fault slip analysis that allows the user to analyze a very large number of scenarios of stress and fault mechanical property variations through space and time. Using both synthetic and real fault system geometries, we analyze a very large number of numerical simulations (125 000) using a fast iterative method to define for the first time macroscopic rupture envelopes for fault systems, referred to as “fault slip envelopes”. Fault slip envelopes are defined using variable friction, cohesion, and stress state, and their shape is directly related to the fault system 3-D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes show that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggest that the Olkiluoto fault system has a better ability to slip under the present-day Andersonian thrust stress regime than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows the user to quantify the anisotropy of strength of 3-D real fault networks as a function of a wide range of possible geological conditions and mechanical properties. This can be useful to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquake hazard studies, geological storage, geothermal resources along faults, and fault leaks or seals in geological reservoirs.


2021 ◽  
Author(s):  
Lea Pousse-Beltran ◽  
Lucilla Benedetti ◽  
Jules Fleury ◽  
Paolo Boncio ◽  
Valery Guillou ◽  
...  

<p>In the Central Apennines (Italy), up to now, no absolute dating directly based on the moraines has been carried out to constrain glacial oscillation. However, climatic constrains are often used in the Central Apennine to estimate long term (> 10 ka) fault slip rate. In addition slip rate assessments based on offset morphotectonic markers on the main branches of fault systems and encompassing several seismic cycles (> 10 ka) are sparse. This is particularly true for the Monte Vettore-Monte Bove fault system which triggered the 2016-2017 seismic sequence. We thus provide new assessment for the vertical slip rates along the Mt Vettore-Mt Bove fault system.  Offset measurements were made using a 5-cm resolution DEM obtained through a drone survey and constrain a fault scarp height of 15.5 ± 1.4 m and a cumulative offset of 32-40.5 m. Samples were collected from the Valle Lunga terminal moraine at 1710 m asl and yield <sup>36</sup>Cl exposure ages of 12.7 + 2.2/-1.9 ka while the flat, abraded surface located on top of the tectonic scarp yield <sup>36</sup>Cl exposure ages of 23.4 + 5.3/-4.3 ka. Assuming the offset started to accumulate when climate conditions allow its preservation, thus once the surface was abandoned, we constrain a vertical slip rate of 1.2 ± 0.2 mm/yr along the master branch of the Mt Vettore normal fault.  This rate is higher than the ones previously obtained from trenches along secondary splays of the Mt Vettore-Mt Bove and on the Norcia fault systems. Besides, the yielded chronology for the last glacial maximum in that area at ~23 ka is in good agreement with the timing previously proposed for the LGM in the Apennines.</p>


2020 ◽  
Author(s):  
Ajay Kumar ◽  
Soumyajit Mukherjee ◽  
Mohamedharoon A. Shaikh ◽  
Seema Singh

<p>The Morni hills located in the north-western Himalaya in Panchkula district, Haryana has undergone poly-phase deformation owing to its complex tectonic history. In order to better understand the kinematic evolution of study area, detailed structural analyses of the fault system at regional-scale is carried out. We perform paleostress analyses on the collected fault-slip data to derive the paleostress tensors. The fault-slip data includes attitudes of fault planes and slickenside lineations, and the sense of slip along the fault plane determined by observing various kinematic indicators. The study area mainly exposes compacted, fine- to medium-grained calcareous sandstones belonging to the lower Siwalik formation in the Himalayan foreland basin. The exposed sandstones contain numerous striated slip planes of varying slip-sense. As the fault planes are intra-formational and exposed in uniform lithology, sense of slip cannot be determined through offset markers. In such cases, the sense of slip of the fault plane is determined solely by observing various slickenside kinematic indicators and fracture types developed on the faulted surface. The slickenside kinematic indicators e.g., calcite mineral steps were found useful in deciphering the sense of movement of each of the slip plane. The paleostress inversion of fault-slip data was carried out by applying the open source software T-Tecto studio X5 to obtain the reduced stress tensor. The Paleostress inversion algorithm called the Right Dihedral Method (RDM) is executed to estimate the principal stress axes orientations. Temporally, the slip planes may have reactivated multiple times preserving multiple slickenside orientations superimposing one another. Such fault-slip data are called heterogeneous and therefore, multiple stress states are deduced to explain the heterogeneous fault-slip data. The paleostress analysis results indicate stress regime index (R’) range 1.25–2.25 and 0.20–1.00 suggesting pure strike-slip to transpressive and pure extensive to transtensive stress regime respectively prevailing in the study area.</p>


2020 ◽  
Author(s):  
Li Yin

<p>In southeastern Tibetan Plateau, the Xianshuihe-Xiaojiang fault system (XXFS) and its neighboring fault systems collectively accommodates the material extrusion of the Tibetan Plateau. However we do not mechanically understand how these faults interact with each other and how the fault interaction impacts strain partitioning, fault slip rates, and seismicity in this region. We develop and use a three-dimensional viscoelastoplastic finite element model to simulate regional deformation, fault slip rates, and fault interaction in the fault system of southeastern Tibetan Plateau. We investigate the effects of inception and activity of faults, fault strength, lithospheric rheology, and topography on partitioning of strain and fault slip rates. Model results show that fault strength, lithospheric rheology, and topography all significantly influence the strain partitioning and slip rates on faults. The initiation of the Daliangshan fault results mainly from the non-smooth fault geometry of the main trace of the XXFS. Our model results support the hypothesis of codependent slip rate between fault systems. For the present fault configuration, our model predicts localized strain in the Daliangshan faults, Yingjing-Mabian faults, and Lianfeng-Zhaotong faults, where numerous earthquakes occurred in recent years.</p>


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


Sign in / Sign up

Export Citation Format

Share Document