The HEMERA Balloon Research Infrastructure

Author(s):  
Felix Friedl-Vallon ◽  
Philippe Raizonville ◽  
André Vargas ◽  
Kristine Dannenberg ◽  
Marta Albano ◽  
...  

<p>Stratospheric balloons are useful platforms for various research and technology needs. They allow to collect valuable data in many science fields, e.g. atmospheric science and astrophysics; they can be used for demonstrations in preparation of new space and Earth observation missions; they can be used to provide calibration/validation data for Earth observation space missions, or for dropping test objects from the stratosphere.</p><p>Various types of balloons are available, corresponding to different missions: Zero Pressure Balloons (ZPB) for heavy payloads (100 kg to 3 tons) and short to medium duration (1 day to several days), Sounding Balloons (SB) for very light payloads (3 kg).</p><p>Payloads can be flown at various altitudes between the ground surface up to 40 km, according the type of balloon and the kind of mission. Compared to satellites, stratospheric balloons can be operated at relatively low cost and with shorter lead times from the experiment idea to the flight.</p><p>Mid-2017, a new Research Infrastructure called HEMERA has been selected by the European Commission within its programme Horizon 2020. The HEMERA objectives are to:</p><ul><li>Provide better and coordinated balloon access to the troposphere and stratosphere for scientific and technological research, in response to the scientific user needs.</li> <li>Attract new users to enlarge the community accessing the balloon infrastructure and foster scientific and technical collaboration.</li> <li>Enlarge the fields of science and technology research conducted with balloons.</li> <li>Improve the balloon service offered to scientific and technical users through innovative developments.</li> <li>Favour standardization, synergy, complementarities and industrialization through joint developments with greater cost-effectiveness.</li> </ul><p>The project is coordinated by CNES and involves 13 partners in total, from various European entities and Canada. The project was kicked-off in late January 2018 and will be executed during 2018-2022.</p><p>Six ZPB flights with a target payload mass of at least 150 kg are foreseen within HEMERA, offering free of charge access to users and scientists for various science measurements and/or for technology tests. In addition, several SB flights are foreseen. The launch sites will be Esrange in Sweden, Timmins in Canada, for the ZPB and Aire sur l'Adour in France for the SB. The selected experiments will fly on balloons during the years 2019-2022. </p><p>Two Calls for Proposals were planned in the HEMERA project, the first was launched in 2018 and 39 answers from 12 countries have been received; 23 experiments have been selected. 31 answers have been received in the frame of the second call, from 10 countries. In total 39 experiments from 13 countries have been selected. The first HEMERA flights occurred in summer 2019 from Kiruna and Timmins.</p><p>In addition, Open Access to balloon data will be organized in the frame of the Data Center, giving access to science data collected during the flights. Networking activities are planned in order to promote the Infrastructure in the European countries, and Joint Research activities are conducted in order to improve as far as possible the balloon offer in the view of the user needs.</p>

Author(s):  
Jacob Heilmann-Clausen ◽  
Tobias Frøslev ◽  
Jens Petersen ◽  
Thomas Læssøe ◽  
Thomas Jeppesen

The Danish Fungal Atlas is a citizen science project launched in 2009 in collaboration among the University of Copenhagen, Mycokey and the Danish Mycological Society. The associated database now holds almost 1 million fungal records, contributed by more than 3000 recorders. The records represent more than 8000 fungal species, of which several hundred have been recorded as new to Denmark during the project. In addition several species have been described as new to science. Data are syncronized with the Global Biodiversity Information Facility (GBIF) on a weekly basis, and is hence freely available for research and nature conservation. Data have been used for systematic conservation planning in Denmark, and several research papers have used data to explore subjects such as host selection in wood-inhabiting fungi (Heilmann‐Clausen et al. 2016), recording bias in citizen science (Geldmann et al. 2016), fungal traits (Krah et al. 2019), biodiversity patterns (e.g. Andrew et al. 2018), and species discovery (Heilmann-Clausen et al. 2019). The project database is designed to faciliate direct interactions and communication among volunteers. The validation of submitted records is interactive and combines species-specific smart filters, user credibility, and expert tools to secure the highest possible data credibility. In 2019, an AI (artificial intelligence) trained species identification tool was launched along with a new mobile app, enabling users to identify and record species directly in the field (Sulc et al. 2020). At the same time, DNA sequencing was tested as an option to test difficult identifications, and in 2021 a high-throughput sequencing facility was developed to allow DNA sequencing of hundreds of fungal collections at a low cost. The presentation will give details on data validation, data use and how we have worked with cultivation of volunteers to provide a truly coherent model for collaboration on mushroom citizen science.


Author(s):  
C. Fish ◽  
S. Slagowski ◽  
L. Dyrud ◽  
J. Fentzke ◽  
B. Hargis ◽  
...  

Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The “secret sauce” is no longer about having the highest resolution imagery, but rather it is about using that imagery – in conjunction with a number of other sources – to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers’ ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.


2020 ◽  
Author(s):  
Valantis Tsiakos ◽  
Maria Krommyda ◽  
Athanasia Tsertou ◽  
Angelos Amditis

<p>Environmental monitoring is based on time-series of data collected over long periods of time from expensive and hard to maintain in-situ sensors available only in specific areas. Due to the climate change it is important to monitor extended areas of interest. This need has raised the question of whether such monitoring can be complemented or replaced by Citizen Science.</p><p>Crowdsourced measurements from low-cost and easy to use portable sensors and devices can facilitate the collection of the needed information with the support of volunteers, enabling the monitoring of environmental ecosystems and extended areas of interest. In particular, during the last years there has been a rapid increase of citizen-generated knowledge that has been facilitated by the wider use of mobile devices and low-cost portable sensors. To enable their easy integration to existing models and systems as well as their utilisation in the context of new applications, citizen science data should be easily discoverable, re-usable, accessible and available for future use.</p><p>The Global Earth Observation System of Systems (GEOSS) offers a single access point to Earth Observation data (GEOSS Portal), connecting users to various environmental monitoring systems around the world while promoting the use of common technical standards to support their utilisation. </p><p>Such a connection was demonstrated in the context of SCENT project. SCENT is a EU project which has implemented an integrated toolbox of smart collaborative and innovating technologies that allows volunteers to collect environmental measurements as part of their everyday activities.</p><p>These measurements may include images that include information about the land cover and land use of the area, air temperature and soil moisture measurements from low-cost portable environmental sensors or river measurements, water level and water velocity extracted from multimedia, images and video, through dedicated tools.</p><p>The collected measurements are provided to policy makers and scientists to facilitate the decision making regarding needed actions and infrastructure improvements as well as the monitoring of environmental phenomena like floods through the crowdsourced information.</p><p>In order to ensure that the provided measurements are of high quality, a dedicated control mechanism has been implemented that uses a custom mechanism, based on spatial and temporal clustering, to identify biased or low quality contributions and remove them from the system.</p><p>Finally, recognising the importance of making the collected data available all the validated measurements are modelled, stored and provisioned using the Open Geospatial Consortium (OGC) standards Web Feature Service (WFS) and Web Map Service (WMS) as applicable.</p><p>This allows the spatial and temporal discovery of information among the collected measurements, encourages their re-usability and allows their integration to systems and platforms utilizing the same standards. The data collected by the SCENT Campaigns organized at the Kifisos river basin and the Danube Delta can be found at the GEOSS portal under the WFS here https://www.geoportal.org/?f:sources=wfsscentID and under the WMS here https://www.geoportal.org/?f:sources=wmsSCENTID.  </p><p>This activity is showcased as part of WeObserve project that has received funding from the European Union’ s Horizon 2020 research and innovation programme under grant agreement No 776740.</p>


Author(s):  
S. A. Piyavsky ◽  
S. R. Kiryukov ◽  
A. S. Kuznetsov ◽  
G. A. Kulakov

The article presents a structural description of the functioning of the regional information and communication system “Student and Labor” (SAL). This system is aimed at identifying and developing creatively gifted youth in the field of science, techniques and technology and is focused on the gradual involvement of university students in real work and interaction with leading enterprises in the region. The first cycle of the SAL system functioning is described, which has a complete character and has already led to a concrete result. The bank of information about the leading enterprises of the region that took part at the initial stage of the functioning of the SAL system were formed as well as the bank of 150 themes of scientific research for student projects, which were proposed by the enterprises themselves. All projects are focused on the practical significance of research for the enterprises themselves, as well as for students, their supervisors from universities and scientific consultants from enterprises that have embarked on joint research activities, which at the first stages are mostly of informational and educational nature. The Union of Employers of the Samara Region and the Council of Rectors of Universities in the Samara region are already taking the necessary measures to implement the described cycle of the functioning of the system SAL in the current academic year.


2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Christopher Cullingworth ◽  
Jan-Peter Muller

Despite the wealth of data produced by previous and current Earth Observation platforms feeding climate models, weather forecasts, disaster monitoring services and countless other applications, the public still lacks the ability to access a live, true colour, global view of our planet, and nudge them towards a realisation of its fragility. The ideas behind commercialization of Earth photography from space has long been dominated by the analytical value of the imagery. What specific knowledge and actionable intelligence can be garnered from these evermore frequent revisits of the planet’s surface? How can I find a market for this analysis? However, what is rarely considered is what is the educational value of the imagery? As students and children become more aware of our several decades of advance in viewing our current planetary state, we should find mechanisms which serve their curiosity, helping to satisfy our children’s simple quest to explore and learn more about what they are seeing. The following study describes the reasons why current GEO and LEO observation platforms are inadequate to provide truly global RGB coverage on an update time-scale of 5-min and proposes an alternative, low-cost, GEO + Molniya 3U CubeSat constellation to perform such an application.


Author(s):  
Johanna Amalia Robinson ◽  
Rok Novak ◽  
Tjaša Kanduč ◽  
Thomas Maggos ◽  
Demetra Pardali ◽  
...  

Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human–information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.


2012 ◽  
pp. 135-139
Author(s):  
Nicolae Ioan Csép

This paper illustrates the efforts based on the results obtained in the funding of precision agriculture, during more than two decades of cooperation between University of Debrecen and University of Oradea, within the framework of joint, EU co-financed projects, and put into practice on both sides of the border. Common plant-health databases, interactive Web pages, consultation activities, professional publications, professional training activities, laboratory infrastructure improvements, common research themes proves the progress made to date and create conditions for further development of joint research activities.


2021 ◽  
Vol 144 (3) ◽  
Author(s):  
Matthias Joppa ◽  
Mike Bermuske ◽  
Frank Rüdiger ◽  
Lars Büttner ◽  
Jochen Fröhlich ◽  
...  

Abstract Impinging circular free-surface water jets are used in challenging cooling and cleaning tasks. In order to develop simulation models for process optimization, validation data are required, which are currently not available. Therefore, the flow field of these jets is studied for the first time with the novel laser Doppler velocity profile sensor. The mean velocity field and fluctuations are measured within the stagnation and adjacent redirection region for radial coordinates up to three times the nozzle diameter. In the examined parameter range with jet velocities up to 17 m/s and nozzle diameters up to 5.2 mm, i.e., Reynolds numbers up to 69 500, thin films of a few hundred micrometers are formed, which hinder the measurement with common optical measuring systems. Based on the measurement results, a comparatively low-cost volume of fluid simulation model is developed and validated that presumes a relaminarized film flow. The profiles measured and the simulated flow show very good agreement. In the future, the simulation model provides a basis for process optimization and the innovative measurement technology used will prospectively provide further detailed insights into other flows with high velocity gradients.


Sign in / Sign up

Export Citation Format

Share Document