A framework for analysing cross-border climate change impacts, responses and their propagation

Author(s):  
Timothy R. Carter ◽  
Magnus Benzie ◽  
Emanuele Campiglio ◽  
Henrik Carlsen ◽  
Stefan Fronzek ◽  
...  

<p>Most studies of climate change impacts, adaptation and vulnerability confine their attention to impacts and responses within the same geographical region. However, cross-border climate change impacts that occur remotely from the location of their initial impact can severely disrupt societies and livelihoods (Benzie et al., 2019; Carter et al., under review). In this paper we present a conceptual framework and accompanying terminology for describing and analysing such cross-border impacts. The conceptual framework distinguishes an initial impact that is caused by a climate trigger within a specific region. Downstream consequences of that impact propagate through an impact transmission system while adaptation responses to deal with the impact are propagated through a response transmission system.</p><p>The framework recognises and classifies differences in the types of climate trigger, categories of cross-border impacts, scales and dynamics of impact transmission, targets and dynamics of responses and the socio-economic and environmental context. We will demonstrate how the framework can be applied using  historical examples of cross-border impacts (e.g. the severe 2011 floods that affected industrial production in Thailand, propagating through the global economy) as well as prospective cases (e.g. multiple cross-border risks and opportunities presented by Arctic sea ice decline).</p><p>We argue that the framework provides a simple, but flexible, structure to describe and analyse cross-border climate impacts and their consequences. It offers a foundation for consistent comparisons of different patterns of cross-border impacts in different sectors and geographies. It also aids understanding of adaptation strategies and their potential consequences. In particular, with systematic application of the framework it is possible to highlight gaps in our existing understanding of system dynamics, or gain new insights into particular leverage points within the system. These can be targeted in order to find ways of building resilience to climate change in the region of origin, along the impact transmission system and in the recipient region exposed to the propagated risk.</p><p>Acknowledgement</p><p>This work is being undertaken as part of the European Commission Horizon 2020-funded project CASCADES (Cascading climate risks: Towards adaptive and resilient European Societies).</p><p>References</p><p>Benzie M, Carter TR, Carlsen H, Taylor R (2019) Cross-border climate change impacts: implications for the European Union. <em>Regional Environmental Change</em> 19: 763-776, https://doi.org/10.1007/s10113-018-1436-1.</p><p>Carter TR, Benzie M, Campiglio E, Carlsen H, Fronzek S, Hildén M, Reyer CPO, West C (in review) A conceptual framework for cross-border impacts of climate change.</p>

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1347
Author(s):  
Kyriakos Maniatis ◽  
David Chiaramonti ◽  
Eric van den Heuvel

The present work considers the dramatic changes the COVID-19 pandemic has brought to the global economy, with particular emphasis on energy. Focusing on the European Union, the article discusses the opportunities policy makers can implement to reduce the climate impacts and achieve the Paris Agreement 2050 targets. The analysis specifically looks at the fossil fuels industry and the future of the fossil sector post COVID-19 pandemic. The analysis first revises the fossil fuel sector, and then considers the need for a shift of the global climate change policy from promoting the deployment of renewable energy sources to curtailing the use of fossil fuels. This will be a change to the current global approach, from a relative passive one to a strategically dynamic and proactive one. Such a curtailment should be based on actual volumes of fossil fuels used and not on percentages. Finally, conclusions are preliminary applied to the European Union policies for net zero by 2050 based on a two-fold strategy: continuing and reinforcing the implementation of the Renewable Energy Directive to 2035, while adopting a new directive for fixed and over time increasing curtailment of fossils as of 2025 until 2050.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252067
Author(s):  
Oladipo S. Obembe ◽  
Nathan P. Hendricks ◽  
Jesse Tack

An increase in global average surface temperature over the 21st century will affect food production. There is still uncertainty if the source of the production losses caused by climate change could be driven either by lower yield or reduced area harvested. We use county-level production data on winter wheat coupled with fine-scale weather outcomes between 1981-2007 to examine the impact of climate change on winter wheat production in Kansas. We decompose the total impact of weather variables through both the yield and harvested acreage channels. We find that an insignificant portion—both in terms of magnitude and statistical significance—of the production losses are due to reduced harvested acres (i.e., crop abandonment). The proportion harvested only account for 14.88% and 21.71% of the total damages under RCPs 4.5 and 8.5 and neither effect is statistically significant. An implication of this result implies that studies that only examine climate impacts on harvested yields are not significantly underestimating the climate change impacts on production.


2019 ◽  
Vol 19 (3) ◽  
pp. 763-776 ◽  
Author(s):  
Magnus Benzie ◽  
Timothy R. Carter ◽  
Henrik Carlsen ◽  
Richard Taylor

2007 ◽  
Vol 18 (1) ◽  
pp. 4-9 ◽  
Author(s):  
P. Mukheibir

There is growing concern that developing countries, such as South Africa, should reduce their coal dependence for energy generation and look to other cleaner technologies. Hydroelectricity is one such option. A number of potential large hydro sites have been identified in Southern Africa, which form part of the Southern African Power Pool. However, limited information exists on the impact of climate change on these sites and its effect on the viability of the hydroelectric schemes. Using downscaled glob-al circulation model information, projected climate impacts and the potential impact these may have on future hydro schemes are discussed.


2010 ◽  
Vol 7 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
M. C. Todd ◽  
R. G. Taylor ◽  
T. Osborne ◽  
D. Kingston ◽  
N. W. Arnell ◽  
...  

Abstract. This paper presents an overview of the methods and results of an assessment of climate change impacts on catchment scale water resources, conducted under the QUEST-GSI (Global Scale Impacts) programme. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. The results from individual basins are presented in other papers in 2010. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.


Author(s):  
Jennifer A. Curtis ◽  
Lorraine E. Flint ◽  
Michelle A. Stern ◽  
Jack Lewis ◽  
Randy D. Klein

AbstractIn Humboldt Bay, tectonic subsidence exacerbates sea-level rise (SLR). To build surface elevations and to keep pace with SLR, the sediment demand created by subsidence and SLR must be balanced by an adequate sediment supply. This study used an ensemble of plausible future scenarios to predict potential climate change impacts on suspended-sediment discharge (Qss) from fluvial sources. Streamflow was simulated using a deterministic water-balance model, and Qss was computed using statistical sediment-transport models. Changes relative to a baseline period (1981–2010) were used to assess climate impacts. For local basins that discharge directly to the bay, the ensemble means projected increases in Qss of 27% for the mid-century (2040–2069) and 58% for the end-of-century (2070–2099). For the Eel River, a regional sediment source that discharges sediment-laden plumes to the coastal margin, the ensemble means projected increases in Qss of 53% for the mid-century and 99% for the end-of-century. Climate projections of increased precipitation and streamflow produced amplified increases in the regional sediment supply that may partially or wholly mitigate sediment demand caused by the combined effects of subsidence and SLR. This finding has important implications for coastal resiliency. Coastal regions with an increasing sediment supply may be more resilient to SLR. In a broader context, an increasing sediment supply from fluvial sources has global relevance for communities threatened by SLR that are increasingly building resiliency to SLR using sediment-based solutions that include regional sediment management, beneficial reuse strategies, and marsh restoration.


2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


2021 ◽  
Author(s):  
Simon Ricard ◽  
Philippe Lucas-Picher ◽  
François Anctil

Abstract. Statistical post-processing of climate model outputs is a common hydroclimatic modelling practice aiming to produce climate scenarios that better fit in-situ observations and to produce reliable stream flows forcing calibrated hydrologic models. Such practice is however criticized for disrupting the physical consistency between simulated climate variables and affecting the trends in climate change signals imbedded within raw climate simulations. It also requires abundant good-quality meteorological observations, which are not available for many regions in the world. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations, nor for statistical post-processing of climate model outputs, nor for calibrating hydrologic models. By combining asynchronous hydroclimatic modelling, an alternative framework designed to construct hydrologic scenarios without resorting to meteorological observations, and quantile perturbation applied to streamflow observations, the proposed workflow produces sound and plausible hydrologic scenarios considering: (1) they preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascades despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four subcatchments of the Chaudière River, Canada, using 9 North American CORDEX simulations and a pool of lumped conceptual hydrologic models. Forced with raw climate model outputs, hydrologic models are calibrated over the reference period according to a calibration metric designed to function with temporally uncorrelated observed and simulated streamflow values. Perturbation factors are defined by relating each simulated streamflow quantiles over both reference and future periods. Hydrologic scenarios are finally produced by applying perturbation factors to available streamflow observations.


2019 ◽  
Author(s):  
Kirsti Hakala ◽  
Nans Addor ◽  
Thibault Gobbe ◽  
Johann Ruffieux ◽  
Jan Seibert

Abstract. Anticipating and adapting to climate change impacts on water resources requires a detailed understanding of future hydroclimatic changes and of stakeholders' vulnerability to these changes. However, climate change impact studies are often conducted at a spatial scale that is too coarse to capture the specificity of individual catchments, and more importantly, the changes they focus on are not necessarily the changes most critical to stakeholders. While recent studies have combined hydrological and electricity market modeling, they tend to aggregate all climate impacts by focusing solely on reservoir profitability, and thereby provide limited insights into climate change adaptation. Here, we collaborated with Groupe E, a hydropower company operating several reservoirs in the Swiss pre-Alps and worked with them to produce hydroclimatic projections tailored to support their upcoming water concession negotiations. We started by identifying the vulnerabilities of their activities to climate change and then together chose streamflow and energy indices to characterize the associated risks. We provided Groupe E with figures showing the projected climate change impacts, which were refined over several meetings. The selected indices enabled us to simultaneously assess a variety of impacts induced by changes on i) the seasonal water volume distribution, ii) low flows, iii) high flows, and iv) energy demand. We were hence able to identify key opportunities (e.g., the future increase of reservoir inflow in winter, when electricity prices are historically high) and risks (e.g., the expected increase of consecutive days of low flows in summer and fall, which is likely to make it more difficult to meet residual flow requirements). This study highlights that the hydrological opportunities and risks associated with reservoir management in a changing climate depend on a range of factors beyond those covered by traditional impact studies. We also illustrate the importance of identifying stakeholder needs and using them to inform the production of climate impact projections. Our user-centered approach is transferable to other impact modeling studies, in the field of water resources and beyond.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2342
Author(s):  
Wangang Liu ◽  
Yiping Chen ◽  
Xinhua He ◽  
Ping Mao ◽  
Hanwen Tian

Global food insecurity is becoming more severe under the threat of rising global carbon dioxide concentrations, increasing population, and shrinking farmlands and their degeneration. We acquired the ISI Web of Science platform for over 31 years (1988–2018) to review the research on how climate change impacts global food security, and then performed cluster analysis and research hotspot analysis with VosViewer software. We found there were two drawbacks that exist in the current research. Firstly, current field research data were defective because they were collected from various facilities and were hard to integrate. The other drawback is the representativeness of field research site selection as most studies were carried out in developed countries and very few in developing countries. Therefore, more attention should be paid to developing countries, especially some African and Asian countries. At the same time, new modified mathematical models should be utilized to process and integrate the data from various facilities and regions. Finally, we suggested that governments and organizations across the world should be united to wrestle with the impact of climate change on food security.


Sign in / Sign up

Export Citation Format

Share Document