Shallow Geothermal Resources Assessment of the Brussels Region: Exploration, 3D Geological Model, Geothermal Potential Mapping and Challenges Related

Author(s):  
Estelle Petitclerc ◽  
Pierre Gerard ◽  
Xavier Devleeschouwer ◽  
Bertrand François ◽  
Marijke Huysmans ◽  
...  

<p>In 2015, a legal framework was implemented in the Brussels-Capital Region (BCR) where passive construction has been mandatory with an obliged heat demand not exceeding 15 kW<sub>h</sub>/m<sup>2</sup>. Since 2015, the interest in installing shallow geothermal systems has significantly increased. However, limited knowledge of ground conditions, lack of public awareness and the urban nature of the Brussels area restrict the development of shallow geothermal systems despite the high potential of this technique in the RBC. The BRUGEO project aims to facilitate accessibility and the efficient use of shallow geothermal energy in the BCR specifically for commercial and residential sectors. Thanks to Brussels ERDF (European Regional Development Fund) funding a consortium of all major actors in geothermal energy were brought together (ULB, Brussels Environment, BBRI, VUB, and GSB). During the  four years project (2016-2020), specific actions promoting the geothermal potential were addressed: 1- Collect existing data related to the knowledge on Brussels subsurface (geological, hydrogeological, and geothermal data) and consolidate them in a single database; 2- Conduct new laboratory and field tests in order to complete geological analyses and to assess geothermal parameters; 3- Map the geothermal potential for open and closed systems. The Geological Survey of Belgium (GSB) has created, during the last 7 years, a GIS based 2D-3D geological model of the BCR underground. 9266 drillings and geotechnical data collected in and around the BCR have been used to create the Brustrati3D model generating interpolated top and base surfaces for 19 geological layers representing the whole lithostratigraphic sequence from Quaternary to the Paleozoic basement. An important exploration phase was included in the first two years of the BRUGEO project to acquire new data improving the geological and hydrogeological knowledge of BCR. Several in-situ parameters are measured by e.g. new piezometers implementation and monitoring, pumping tests, cores sampling, logging and enhanced thermal response tests (eTRT). These measurements are implemented as far as possible on future private projects by a win-win approach. The idea is to be grafted on existing projects to increase the data acquisition and to avoid purely exploratory drilling that are expensive and not used later for any geothermal exploitation. So far, the BRUGEO consortium has also conducted three exploration drillings to assess the lithology, the structure, the groundwater flows, and geophysical properties of the Cambrian basement (Brabant Massif). In parallel, laboratory measurements are achieved to characterize the determinant thermal parameters of the Brussels underground. From all the subsurface data collected, the BRUGEO consortium aims at mapping the geothermal potential of the BCR. This web-based mapping, accessible to design offices, installers of geothermal systems, citizens, public and private stakeholders or regional and municipalities administrations, will make it easier to foster the use of geothermal energy. The web portal will consist of an interactive decision support and a design tool based on maps built thanks to the geoscientific 3D models and geothermal parameters assessed during BRUGEO. The results are expected to be published online in March 2020.</p>

2022 ◽  
Vol 9 ◽  
Author(s):  
Yonghui Huang ◽  
Yuanzhi Cheng ◽  
Lu Ren ◽  
Fei Tian ◽  
Sheng Pan ◽  
...  

Assessment of available geothermal resources in the deep oil field is important to the synergy exploitation of oil and geothermal resources. A revised volumetric approach is proposed in this work for evaluating deep geothermal potential in an active oil field by integrating a 3D geological model into a hydrothermal (HT)-coupled numerical model. Based on the analysis of the geological data and geothermal conditions, a 3D geological model is established with respect to the study area, which is discretized into grids or elements represented in the geological model. An HT-coupled numerical model was applied based on the static geological model to approximate the natural-state model of the geothermal reservoir, where the thermal distribution information can be extracted. Then the geothermal resource in each small grid element is calculated using a volumetric method, and the overall geothermal resource of the reservoirs can be obtained by making an integration over each element of the geological model. A further parametric study is carried out to investigate the influence of oil and gas saturations on the overall heat resources. The 3D geological model can provide detailed information on the reservoir volume, while the HT natural-state numerical model addressed the temperature distribution in the reservoir by taking into account complex geological structures and contrast heterogeneity. Therefore, integrating the 3D geological modeling and HT numerical model into the geothermal resource assessment improved its accuracy and helped to identify the distribution map of the available geothermal resources, which indicate optimal locations for further development and utilization of the geothermal resources. The Caofeidian new town Jidong oil field serves as an example to depict the calculation workflow. The simulation results demonstrate in the Caofeidian new town geothermal reservoir that the total amount of geothermal resources, using the proposed calculation method, is found to be 1.23e+18 J, and the total geothermal fluid volume is 8.97e+8 m3. Moreover, this approach clearly identifies the regions with the highest potential for geothermal resources. We believe this approach provides an alternative method for geothermal potential assessment in oil fields, which can be also applied globally.


2021 ◽  
Author(s):  
Virginie Hamm ◽  
Laure Capar ◽  
Perrine Mas ◽  
Philippe Calcagno ◽  
Séverine Caritg-Monnot

<p>In Ile-de-France region, in the center of Paris Basin, geothermal energy contributes to a large extent to the supply of heating networks with about 50 of the 70 deep geothermal installations dedicated to district heating in France. Those installations mainly exploit the Dogger limestones between 1500-2000 m deep, which are present throughout the Paris Basin. In the case of Centre Val-de Loire region, south of Paris Basin, deep geothermal energy is very little developed, only one geothermal well is currently in operation and targeting the Triassic aquifer at Chateauroux on the southern edge of the basin. A former doublet had also targeted the Trias at Melleray (Orléans metropolis) in the 1980’s but was shut down after one year due to reinjection problem.</p><p>In 2019, Orléans metropolis, in collaboration with BRGM, has launched a program in order to investigate its deep geothermal resources like the Dogger and Trias aquifers between 900 m and 1500 m deep. This action is in line with Orléans métropolis Territorial Climate Air Energy Plan (PCAET) and master plan for the heating networks adopted which foresee 65 000 additional dwellings to be connected using geothermal energy based heating networks.</p><p>In order to reduce the risks of failure of deep geothermal drilling, one of the prerequisites is a better knowledge of the subsurface. This requires the development of an accurate 3D subsurface geomodel as well as the most reliable possible hydrodynamic and thermal parameters to assess the geothermal potential. The purpose of this work was to produce a 3D geological model of the Dogger and Triassic units, on the scale of Orléans Metropolis, based on hydrocarbon and geothermal well data as well as interpretation of 2D seismic data. Seismic data acquired in the 1960s and the 1980s were processed and interpreted. A particular attention was paid to the Sennely fault and its geometry. It crosses the study area and was interpreted as a relay fault segmented in three parts. The horizon picking points were then converted from two-way time to depth and integrated in the GeoModeller software for the development of the 3D geomodel. It was then used for first hydrothermal simulations in order to assess the theorical potential of the Dogger and Trias aquifers at Orléans metropolis.</p><p>The 3D geomodel and first geothermal potential assessment have allowed defining areas of interest for geothermal development into the Dogger or Trias. However an initial exploratory drilling well or additional exploration techniques will be necessary to confirm/specify the reservoir properties (useful thickness, porosity, permeability) and the connectivity of the reservoir(s) and the flow rates that can actually be exploited, which cannot be predicted by the current geological model.</p>


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1302 ◽  
Author(s):  
Leszek Pająk ◽  
Barbara Tomaszewska ◽  
Wiesław Bujakowski ◽  
Bogusław Bielec ◽  
Marta Dendys

The paper presents a review of the geological and hydrogeological data of the Lower Cretaceous aquifer in the Polish Lowlands and discusses the possibilities for the utilisation of geothermal water resources in existing and new district heating systems. Based on experience related to the use of thermal waters in existing geothermal systems, and using data from the literature, assessments have been made of the energy and environmental effects of the application of low-enthalpy geothermal resources from the Lower Cretaceous aquifer as a source of heat for urban district heating systems. The authors concluded that the implementation of such solutions could result in the production of approximately 4 PJ of geothermal energy annually. To date, these resources have only been developed in three locations—Mszczonów, Uniejów and Poddębice—with the total amount of energy generated annually reaching 100 TJ/year. Similar district heating networks in 120 nearby localities have been also identified. Here, specified geological and hydrogeological conditions enable the extraction of heat from the investigated Lower Cretaceous aquifer, with the aim of using this for heating purposes. To achieve this goal, multiple measures are required, including the following: raising public awareness through appropriate education programmes aimed at the youngest school children; systemic, efficient energy management measures at the central, regional and local levels, and providing financial support and ensuring regulations and laws aimed at improving the development of geothermal resources.


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Susan G. Hamm ◽  
Arlene Anderson ◽  
Douglas Blankenship ◽  
Lauren W. Boyd ◽  
Elizabeth A. Brown ◽  
...  

Abstract Geothermal energy can provide answers to many of America’s essential energy questions. The United States has tremendous geothermal resources, as illustrated by the results of the DOE GeoVision analysis, but technical and non-technical barriers have historically stood in the way of widespread deployment of geothermal energy. The U.S. Department of Energy’s Geothermal Technologies Office within the Office of Energy Efficiency and Renewable Energy has invested more than $470 million in research and development (R&D) since 2015 to meet its three strategic goals: (1) unlock the potential of enhanced geothermal systems, (2) advance technologies to increase geothermal energy on the U.S. electricity grid, and (3) support R&D to expand geothermal energy opportunities throughout the United States. This paper describes many of those R&D initiatives and outlines future directions in geothermal research.


Author(s):  
Emmanuel Yeri Kombe ◽  
Joseph Muguthu

The East African Rift is among the most crucial regions of the world endowed with a remarkable geothermal potential. Using current technologies, East African countries have a geothermal power potential of more than 15,000 MWe. Nevertheless, the zone is still at an early stage of geothermal development with few plants producing a few hundred MWe. Among East African countries that have carried out research on geothermal resources, Kenya is leading in utilising geothermal energy resources for electricity generation. Eritrea, Uganda, Tanzania and Djibouti are at exploration stage while Malawi and Rwanda have so far not gone past geothermal resource potential record work. This study sought to address the challenges and barriers to the adoption of geothermal energy as well as the strategies to implement geothermal energy plans in East Africa.


2015 ◽  
Vol 3 (1) ◽  
pp. 7-11 ◽  
Author(s):  
G. Falcone

<p><strong>Abstract.</strong> The classification of geothermal resources is dependent on the estimate of their corresponding geothermal potential, so adopting a common assessment methodology would greatly benefit operators, investors, government regulators and consumers. <br><br> Several geothermal classification schemes have been proposed, but, to date, no universally recognised standard exists. This is due to the difficulty in standardising fundamentally different geothermal source and product types. The situation is not helped by the accepted use of inconsistent jargon among the geothermal community. In fact, the term "geothermal potential" is often interpreted differently by different geothermal practitioners. <br><br> This paper highlights the importance of integrating the classification of geothermal potential with that of geothermal energy extraction from well-defined development projects. A structured progression, from estimates of in situ quantities for a given prospect to actual production, is needed. Employing a unique, unambiguous framework would ensure that the same resource cannot exist simultaneously under different levels of maturity of the estimate (as in double bookings of resources), which would let stakeholders better assess the level of risk involved and the steps needed for a geothermal potential to achieve commercial extraction.</p>


2020 ◽  
Vol 39 (12) ◽  
pp. 855-856
Author(s):  
J. O. Kaven ◽  
D. C. Templeton ◽  
Arpita P. Bathija

Geothermal energy is a global renewable resource that has the potential to provide a significant portion of baseload energy in many regions. In the United States, it has the potential to provide 8.5% of the electric generation capacity by the middle of the century. In general, geothermal systems require heat, permeability, and water to be viable for energy generation. However, with current technologies, only heat is strictly necessary in a native system. Engineered geothermal systems (EGS) introduce water into the subsurface at elevated pressures and reduced temperatures and enhance permeability through hydraulic and/or shear fracturing. Additionally, although moderate- to high-temperature resources currently dominate geothermal energy production, low-temperature resources have been utilized for direct-use cases. When well balanced and maintained, geothermal resources can produce significant amounts of heat and achieve long-term sustainability on the order of an estimated tens to hundreds of years.


Georesursy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 113-122
Author(s):  
Alexander N. Shulyupin ◽  
Natalia N. Varlamova

Based on the analysis of publications in world publications, as well as a generalization of the experience of developing domestic geothermal fields, current trends in the development of geothermal resources are shown. The key trend is considered to be the transition from subsidized to commercial projects, which increases the relevance of research in areas that have a significant impact on the economic efficiency of resource development processes, primarily in the direction of geothermal technologies. In terms of subsidized projects that set research goals, the most relevant are works in the direction of EGS (Enhanced Geothermal Systems). Moreover, there is a tendency towards the creation of international interdisciplinary collaborative research teams. It is noted that the current level of technology development allows producing geothermal energy for use in local heat supply systems practically anywhere in the world. However, given the concentration of power per unit area, the basis of modern geothermal energy is still the direction associated with the rise of deep fluids to the surface in areas characterized by the presence of ascending flows of hot juvenile fluids. It is indicated that Russia is lagging behind the world level of progress in the development of geothermal resources, including in terms of current research and development directions, and measures are proposed to overcome this lag.


2020 ◽  
Vol 205 ◽  
pp. 01002
Author(s):  
Kneafsey Timothy ◽  

Three components are typically needed to extract geothermal energy from the subsurface: 1. hot rock, 2. a heat transfer fluid, and 3. flow pathways contacting the fluid and the rock. These naturally occur in many locations resulting in hydrothermal systems, however there are enormous regions containing hot rock that do not naturally have adequate fluid, and/or appropriate fluid permeability to allow hot fluid extraction. Some type of engineering or enhancement of these systems would be required to extract the energy. These enormous regions provide the possibility of long-term extraction of significant quantities of energy. Enhanced (or engineered) Geothermal Systems (EGS) are engineered reservoirs created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. There are technological challenges that must be addressed in order to extract the heat. These include proper stimulation, effective monitoring, reservoir control, and reservoir sustainability. The US DOE Geothermal Technologies Office and geothermal agencies from other countries have supported field tests over a range of scales and conditions. A current US field project, the EGS Collab Project, is working nearly a mile deep in crystalline rock at the Sanford Underground Research Facility (SURF) to study rock stimulation under EGS stress conditions. We are creating intermediate-scale (tens of meters) test beds via hydraulic stimulation and are circulating chilled water to model the injection of cooler water into a hot rock which would occur in an EGS, gathering high resolution data to constrain and validate thermal-hydrological-mechanical-chemical (THMC) modeling approaches. These validated approaches would then be used in the DOE’s flagship EGS field laboratory, Frontier Observatory for Research in Geothermal Energy (FORGE) underway in Milford, Utah and in commercial EGS. In the EGS Collab project, numerous stimulations have been performed, characterized, and simulated and long-term flow tests have been completed.


Sign in / Sign up

Export Citation Format

Share Document