Alternate wetting and drying irrigation for rice: first experimental activities in northern Italy

Author(s):  
Olfa Gharsallah ◽  
Marco Romani ◽  
Andrea Ricciardelli ◽  
Michele Rienzner ◽  
Alice Mayer ◽  
...  

<p>Italy is Europe’s leading rice producer, with over half of the total production, almost totally concentrated in a large paddy rice area in the north-western part of the country, stretching across the border between the Lombardy and Piedmont regions in the Po river valley. In this area, rice irrigation has been traditionally carried out by wet seeding and continuous flooding. The introduction of alternative water-saving irrigation strategies could reduce water needs and environmental impacts; however, before extensively adopting them, their effects at both the field and irrigation district scales must be quantified.</p><p>In the context of the MEDWATERICE project (PRIMA-Section2-2018), in the agricultural season 2019 an experimental platform was set-up in a location within the paddy area (Pavia province), to compare different irrigation strategies: wet seeding and traditional flooding (WFL), dry seeding and delayed flooding (DFL), and a ‘safe' wet seeding and alternated wetting and drying (AWD). Six plots of about 20 m x 80 m each were set-up, with two replicates for each irrigation option. One out of the two replicates was instrumented with: water inflow and outflow meters, piezometers, tensiometers, and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters were conducted. Nutrients (N, P, K) and two widely used pesticides (Clomazone, MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. The experimental activity in the platform was carried out for two years (2019 and 2020), and an upscaling of the results at the irrigation district scale is foreseen in the project.</p><p>Soil water balances at the field scale were computed through an approach integrating field measurements of irrigation flows and storages with hydrological modelling, to compare the three irrigation management strategies under similar soil conditions. Results for 2019 showed that DFL allowed a water saving of 10% compared to WFL, while a higher water saving (19%) was achieved with AWD, as expected. Rice grain yield was found to be comparable for all the investigated irrigation treatments. Also, the grain N content was not significantly affected by the water management strategy adopted: the highest values were obtained in WFL and AWD (1.4 N%), while the lowest in DFL (1.2 N%). Total As in grain was not significant for any of the irrigation strategies, but rice Cd level was statistically higher in AWD, although under the legal limits set in the EU even for baby food. As far as water quality is concerned, in surface water, soil solution and groundwater, concentrations for both herbicidesdid not reach significant values, even after treatments, except in limited cases that could depend on relevant concentrations already present in the irrigation inflow. Data for 2020 are under elaboration and first results will be illustrated during the conference.</p>

2020 ◽  
Author(s):  
Arianna Facchi ◽  
Alice Mayer ◽  
Enrico Chiaradia ◽  
Andrea Ricciardelli ◽  
Michele Rienzner ◽  
...  

<p>In the Mediterranean basin, rice is cultivated over an area of 1,300,000 hectares. The most important rice-producing countries are Italy and Spain in Europe (72% of the EU production; 345,000 ha), and Egypt and Turkey among the extra-EU countries (almost totality of the production; 789,000 ha). Traditionally, rice is grown under continuous flooding; thus, it requires much more irrigation than non-ponded crops. The MEDWATERICE project (PRIMA-Section 2-2018; https://www.medwaterice.org/) aims at exploring sustainability of innovative rice irrigation management solutions, in order to reduce rice water consumption and environmental impacts, and to extend rice cultivation outside of traditional paddy areas to meet the escalating demand. Within the MEDWATERICE project, irrigation management options to address the main site-specific problems are being tested for each rice areas involved in the project (IT, ES, PT, EG, TR). Case studies are being conducted in pilot farms, with the involvement of Stake-Holder Panels (SHPs) in each country. Data collected at the farm level will be extrapolated to the irrigation district level, to support water management decisions and policies. Moreover, indicators for quantitative assessment of environmental, economic and social sustainability of the irrigation options will be defined.</p><p>This work illustrates the first year of results for the Italian Case Study (Lomellina area, Pavia) at the pilot farm scale. This area is characterized by a growing water scarcity in drought years in many districts. Within the farm managed by the National Rice Research Center (CRR), in the agricultural season 2019 the experimentation was conducted in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) water-seeded rice with continuous flooding (WFL), ii) dry-seeded rice with continuous flooding from the 3-4 leaf stage (DFL), and iii) water seeded-rice with alternate wetting and drying from fertilization at the tillering stage (AWD). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters (LAI, crop height, crop rooting depth) were performed. Moreover, nutrients (TN, NO<sub>3</sub>, PO<sub>4</sub>, K) and two widely used pesticides (Sirtaki – a.i. Clomazone; Tripion E – a.i. MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. First results in terms of cumulative water balance components (rainfall, irrigation inflow and outflow, difference in soil and ponding water storage, evapotranspiration, net percolation), water application efficiency (evapotranspiration over net water input), and water productivity (grain production over net water input), will be presented and discussed. Results of a 1D Richard-equation-based numerical simulation model applied to generalize results obtained under the different irrigation regimes will be moreover illustrated.</p>


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1833 ◽  
Author(s):  
Alice Mayer ◽  
Michele Rienzner ◽  
Sandra Cesari de Maria ◽  
Marco Romani ◽  
Alberto Lasagna ◽  
...  

European rice production is concentrated in limited areas of a small number of countries. Italy is the largest European producer with over half of the total production grown on an area of 220,000 hectares, predominantly located in northern Italy. The traditional irrigation management (wet seeding and continuous flooding until few weeks before harvest—WFL) requires copious volumes of water. In order to propose effective ‘water-saving’ irrigation alternatives, there is the need to collect site-specific observational data and, at the same time, to develop agro-hydrological models to upscale field/farm experimental data to a spatial scale of interest to support water management decisions and policies. The semi-distributed modelling system developed in this work, composed of three sub-models (agricultural area, groundwater zone, and channel network), allows us to describe water fluxes dynamics in rice areas at the irrigation district scale. Once calibrated for a 1000 ha district located in northern Italy using meteorological, hydrological and land-use data of a recent four-year period (2013–2016), the model was used to provide indications on the effects of different irrigation management options on district irrigation requirements, groundwater levels and irrigation/drainage network efficiency. Four scenarios considering a complete conversion of rice irrigation management over the district were implemented: WFL; DFL—dry seeding and delayed flooding; WDA—alternate wetting and drying; WFL-W—WFL followed by post-harvest winter flooding from 15 November to 15 January. Average results for the period 2013–2016 showed that DFL and WDA would lead to a reduction in summer irrigation needs compared to WFL, but also to a postponement of the peak irrigation month to June, already characterized by a strong water demand from other crops. Finally, summer irrigation consumption for WFL-W would correspond to WFL, suggesting that the considered winter flooding period ended too early to influence summer crop water needs.


2018 ◽  
Vol 35 (2) ◽  
pp. 469-484
Author(s):  
Nora Husein ◽  
Mohamed El-Ansary ◽  
Montaser Awad ◽  
Harby Mostafa

2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


2016 ◽  
Vol 15 (1) ◽  
pp. 78 ◽  
Author(s):  
Nurike Oktavia ◽  
Henmaidi Henmaidi ◽  
Jonrinaldi Jonrinaldi

The most popular inventory model to determine production lot size is Economic Production Quantity (EPQ). It shows enterprise how to minimize total production cost by reducing inventory cost. But, three main parameters in EPQ which are demand, machine set up cost, and holding cost, are not suitable to solve issues nowadays. When an enterprise has two types of demand, continue and discrete demand, the basic EPQ would be no longer useful. Demand continues comes from a customer who wants their needs to be fulfilled every time per unit time, while the fulfillment of demand discrete is at a fixed interval of time. A literature review is done by writers to observe other formulation of EPQ model. As there is no other research can be found which adopt this topic, this study tries to develop EPQ model considering two types of demand simultaneously.


2013 ◽  
Vol 3 ◽  
pp. 106-113
Author(s):  
M.H. Ali ◽  
I. Abustan

Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop).


2013 ◽  
Vol 316-317 ◽  
pp. 299-306
Author(s):  
Ai Hong Gai ◽  
Ren Zhi Zhang ◽  
Fang Chen ◽  
Xiao Long Wang

The soil organic carbon density and storage of Maiji Area of Tianshui was estmiated, using the data of 6060 soil profile from the second soil survey of China and formulating fertilization for soil conditions in 2008. Integrating the soil map, land use status map and district map of Maiji Area of Tianshui, the index of the characteristic of soil organic distribution in different soil and soil layers were analyzed. Results showed: the soil of Maiji area have low average density, when soil secondary census, depths of 5cm,20cm,1m average density of organic carbon are 0.92kg•m-2,3.31kg•m-2,7.79kg•m-2 respectively, average density of organic carbon at depth of 20cm is 2.43 kg•m-2 in 2008 years, As a standard of Yu Dongsheng’s (2005) estimation of average density of 9.60 kg•m-2 in the depth of 1m all over the China, Maiji area 1m deep soil organic carbon density is lower 1.91kg•m-2 than the average density of whole country; The calculation of the secondary survey, reserves of organic carbon in surface soil (0-5cm) is about 4.83×106t, reserves of organic carbon in fall (0-20cm) is about 12.46×106t, reserves of soil organic carbon in 1m depth is about 45.17×106t, reserves of soil organic carbon in fall (0-20cm) is about 18.55×106t in 2008 years. In a word, the soil organic carbon storage was relatively indigent in Maiji Area of Tianshui.


Sign in / Sign up

Export Citation Format

Share Document