Multi-scale impacts of Antuco basaltic stratovolcano (Southern Andes, Chile) ca. 6.2 ka sector collapse: avalanche deposition, eruptive behavior transformation and hydrologic reconfiguration

Author(s):  
Jorge Romero ◽  
Margherita Polacci ◽  
Hugo Moreno ◽  
Sebastian Watt ◽  
Miguel Angel Parada ◽  
...  

<p>Reconstructing the complex processes triggered by catastrophic destruction of volcanoes on both their own magmatic system and the surrounding landscape, is a fundamental task for evaluating long-timescale volcanic hazards and controls on the development of volcanoes. Antuco stratovolcano (37.4°S, 71.4°W; Chile), is a dominantly basaltic composite edifice which original ca. 3300 m altitude edifice experienced a ca. 5 km<sup>3</sup> Bandai-type sector collapse at ~6.2 ka BP. We carried out field studies of its debris avalanche deposit (DAD), which was distributed to the W and consist of chaotic breccias, with a longitudinal facies transformation from 2 large proximal toreva-block facies (4 & 9 km W from the scar) to megablocks, blocks and matrix facies in distal areas (up to 20 km from the scar). Basal facies are fine grained shredded rocks and contain substratum injections and clastic dykes. The surface of the avalanche is hummocky, and the size, internal architecture and lithology of hummocks vary with distance. At El Peñón and Manquel (10 to 20 km W from the scar) the DAD is overlaid by a sequence of dilute pyroclastic density currents (PDCs) containing juvenile ash and highly vesicular porphyritic basalt scoria fine to medium lapilli size. Further W, one of the latest dilute PDC gave ca. 3.4 ky BP in charcoal.  These PDCs are separated from two thick, far-reaching basaltic andesite overlying lava flows (post-collapse Antuco basal flows) by a paleosol, and they show compositional features consistent with mixing of a highly zoned or compartmentalised magma storage system at <5km depth. Subsequently, that event was followed by the initiation of a renewed basaltic magmatic stage and cone regeneration at Antuco during the Late Holocene to the present. These observations plus the detailed study of the composition and texture of post-collapse products suggests a long-lasting reconfiguration of the plumbing system in response to depressurization induced by the sector collapse. The DAD also blocked the natural output of Lake Laja, increasing its level ca. 200 m and then triggering catastrophic outburst floods by dam rupture, preserved as alluvial beds interpreted as debris and hyperconcetrated flow deposits. The ancestral Laja lake outburst, eroded and redeposited tens of meters of basaltic sediments and boulders as far as 120 km within the Central Depression, W from the volcano. Downstream, along the Itata and Biobío rivers (the latter fed by Laja River) at least two fluvial/alluvial terraces are formed by these volcaniclastic materials, 140-170 km WNW from Antuco volcano. These deposits develop laminar, cross bedded and flaser structures. In addition, fragments of pumice, charcoal and archaeological ceramics have been recognised in the sediments. Ceramics where likely produced at the Talcahuano-1 archaeological site (ca. 1.890 BP), in agreement with charcoal that provides a maximum age between 1.8 and 1.85 ky BP for the younger flooding events. The coupled investigation of the impacts produced by massive debris avalanches, especially at basaltic-arc stratovolcanoes, is important to understand their long-term system evolution and hazards.</p>

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


2021 ◽  
pp. SP520-2021-144
Author(s):  
Marie-Noëlle Guilbaud ◽  
Corentin Chédeville ◽  
Ángel Nahir Molina-Guadarrama ◽  
Julio Cesar Pineda-Serrano ◽  
Claus Siebe

AbstractThe eruption of the ∼10 km3 rhyolitic Las Derrumbadas twin domes about 2000 yrs ago has generated a wide range of volcano-sedimentary deposits in the Serdán-Oriental lacustrine basin, Trans-Mexican Volcanic Belt. Some of these deposits have been quarried, creating excellent exposures. In this paper we describe the domes and related products and interpret their mode of formation, reconstructing the main phases of the eruption as well as syn-and-post eruptive erosional processes. After an initial phreatomagmatic phase that built a tuff ring, the domes grew as an upheaved plug lifting a thick sedimentary pile from the basin floor. During uplift, the domes collapsed repeatedly to form a first-generation of hetero-lithologic hummocky debris avalanche deposits. Subsequent dome growth produced a thick talus and pyroclastic density currents. Later, the hydrothermally-altered over-steepened dome peaks fell to generate 2nd generation, mono-lithologic avalanches. Subsequently, small domes grew in the collapse scars. From the end of the main eruptive episode onwards, heavy rains remobilized parts of the dome carapaces and talus, depositing lahar aprons. Las Derrumbadas domes are still an important source of sediments in the basin, and ongoing mass-wasting processes are associated with hazards that should be assessed, given their potential impact on nearby populations.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5752296


2021 ◽  
Author(s):  
Abimbola Chris Ogunyele ◽  
Tommaso Giovanardi ◽  
Mattia Bonazzi ◽  
Maurizio Mazzucchelli ◽  
Alberto Zanetti

<p>The Ivrea-Verbano Zone (IVZ, westernmost sector of the Southern Alps) represents a unique opportunity to investigate the Paleozoic to Mesozoic geodynamic evolution of the Gondwana and Laurasia boundary from the perspective of the lower continental crust. Only recently, the petrochemical record of Triassic-Jurassic magmatism has been recognized. It mainly affected the northernmost tip, the Finero Complex, where the continental crust was tectonically thinned before opening of Alpine Tethys. However, the Mesozoic magmatism in the Finero Complex is still poorly-constrained. Firstly, its extent is largely unknown, because the mantle and crustal intrusives were already enriched by Paleozoic processes. Secondly, Mesozoic melts migration started when the Finero Complex was still placed at P-T conditions typical of a continental crust-mantle transition (1 GPa): this has promoted the reopening of the geochronological clocks in both Paleozoic and Mesozoic rocks, which usually provides wide time intervals. Lastly, the finding of Mesozoic magmatism as composite veins/pods and metasomatised layers has not allowed an exhaustive reconstruction of the primitive melts geochemistry. To place further constraints on such issue, a new dyke swarm cropping out in the Finero Phlogopite Peridotite mantle unit has been investigated. Dykes usually cut at high angle the mantle foliation and are up to 60 cm thick. They are composed by coarse-grained hornblendite to anorthosite, both phlogopite/biotite-bearing. Many dykes are composite, showing variable proportions of hornblendite and anorthosite. In places, the dyke swam was affected by volatiles overpressure as late magmatic stage, which produced plastic flow and development of a porphyroclastic structure by deformation of the early cumulates, with widespread segregation of a fine-grained mica matrix.</p><p>Dykes mainly consist of pargasite, phlogopite/biotite, albite (An 8-10), in association with apatite, monazite, ilmenite, zircon, Nb-rich oxides, carbonates. Enrichments in Fe (amphibole and biotite) and Na (plagioclase) suggest segregation from evolved melts, strongly enriched in H<sub>2</sub>O, P, C. The large LILE and LREE contents in amphiboles, sometimes associated to high Nb, Ta, Zr and Hf concentrations, as well as the mineral assemblage, support an alkaline affinity of the melts. The strongly positive εHf<sub>t </sub>(+10) of zircons and the isotopic Sr composition of amphiboles (0.7042) point to a derivation of the melts from mildly enriched sources, possibly located at the crust-mantle interface.</p><p>Zircons from anorthosite layers are mostly anhedral fragments. They show homogenous internal structure or sector zoning. Concordant <sup>206</sup>Pb/<sup>238</sup>U zircon ages vary from 221 ± 9 Ma to 192 ± 8 Ma. The results of this study confirm that mantle input to the Southern Alps magmatism was of alkaline affinity from Norian to Sinemurian. A widespread fluids circulation induced by such magmatism at high P-T conditions was likely the main cause of the diffuse geochronological reset towards Mesozoic ages of the northern IVZ.</p>


2017 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanche caused by the sector collapse of a volcanic mountain often forms characteristic depositional landforms including hummocks. Not only sedimentological but also geomorphological analyses of debris avalanche deposits (DAD) are crucial to clarify the size, mechanisms, and processes of the debris avalanche. We investigate the morphology of hummocks newly identified in the DAD at the north-eastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion multi-view stereo photogrammetry (SfM), we obtained high-definition digital elevation model (DEM) and orthorectified image of the DAD surface with hummocks. Detailed geometric features of the hummocks are investigated using the RPAS-derived high-definition DEM. The source volume of the DAD was also estimated by reconstructing the original shape of the mountain body using a lower-resolution satellite-based DEM. For this, topographic cross sections are examined based on the slopes around the scar that are regarded as the remnant topography preserved since the sector collapse. The spatial distribution of hummocks shows an unusual pattern regarding the distance-size relationships, i.e., anomalously concentrated in a certain distance from the source. The hummocks are found to be aligned toward the flow direction of the debris avalanche, suggesting the extensional regime of the debris avalanche. These facts indicate that this debris avalanche did not follow the typical flow type of debris avalanches observed in the other cases. Instead, the topographic constraints by former caldera wall and fault-induced lineaments could have strongly affected the flow course and pattern in this particular case: The pre-existing caldera wall topography could have acted as the topographic barriers for the debris avalanche to force the initial flow to turn northward, and the flow regime to be once compressional followed by extensional at the narrow and steepened outlet valley. Also, the estimated volume of the DAD 12–15 × 108 m3 gives its mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche could have flown down to the far downstream areas from the presently-observed limit of the DAD extent. Assessments of the DAD including the results of this study can provide further insights into the risk and mitigation of potential disasters in the study area.


2021 ◽  
Author(s):  
Geoffrey Lerner ◽  
Susanna Jenkins ◽  
Sylvain Charbonnier ◽  
Jean-Christophe Komorowski ◽  
Peter Baxter

Pyroclastic density currents (PDCs) that escape their confining channels are among the most dangerous of volcanic hazards. These unconfined PDCs are capable of inundating inhabited areas that may be unprepared for these hazards, resulting in significant loss of life and damage to infrastructure. Despite their ability to cause serious impacts, unconfined PDCs have previously only been described for a limited number of specific case studies. Here, we carry out a broader comparative study that reviews the different types of unconfined PDCs, their deposits, dynamics and impacts, as well as the relationships between each element. Unconfined PDCs exist within a range of concentration, velocity and temperature: characteristics that are important in determining their impact. We define four end-member unconfined PDCs: 1. fast overspill flows, 2. slow overspill flows, 3. high-energy surges, and 4. low-energy detached surges (LEDS), and review characteristics and incidents of each from historical eruptions. These four end-members were all observed within the 2010 eruptive sequence of Merapi, Indonesia. We use this well-studied eruption as a case study, in particular the villages of Bakalan, 13 km south, and Bronggang 14 km south of the volcano, which were impacted by slow overspill flows and LEDS, respectively. These two unconfined PDC types are the least described from previous eruptions, but during the Merapi eruption the overspill flow resulted in building destruction and the LEDS in significant loss of life. We discuss the dynamics and deposits of these unconfined PDCs, and the resultant impacts. We then use the lessons learned from the 2010 Merapi eruption to assess some of the impacts associated with the deadly 2018 Fuego, Guatemala eruption. Satellite imagery and media images supplementing fieldwork were used to determine the presence of both overspill flows and LEDS, which resulted in the loss of hundreds of lives and the destruction of hundreds of buildings in inundated areas within 9 km of the summit. By cataloguing unconfined PDC characteristics, dynamics and impacts, we aim to highlight the importance and value of accounting for such phenomena in emergency management and planning at active volcanoes.


2021 ◽  
Vol 21 (1) ◽  
pp. 417-437
Author(s):  
Joana Medeiros ◽  
Rita Carmo ◽  
Adriano Pimentel ◽  
José Cabral Vieira ◽  
Gabriela Queiroz

Abstract. The Azores are an active volcanic region that offers exceptional conditions for nature-based tourism, one of the main axes of economic growth in the archipelago. A future volcanic eruption may have long-term consequences to this economic sector. Therefore, it is fundamental to assess its vulnerability to volcanic hazards in order to try to mitigate the associated risk. This study proposes a new approach to assessing the economic impact of explosive eruptions on the tourism sector. We considered two eruptive scenarios for Fogo volcano (São Miguel Island), the most probable (Volcanic Explosivity Index, VEI, 4 sub-Plinian eruption) and the worst-case (VEI 5 Plinian eruption), both producing tephra fallout and pyroclastic density currents. The results of numerical simulations were overlaid with tourism-related buildings and infrastructure of Vila Franca do Campo municipality to identify the elements at risk. The loss present value method was used to estimate the benefits generated by the accommodation units over 30 years for different economic scenarios. The assessment of the economic impact using 2018 indicators reveals that in a near-total-destruction scenario, the economic loss is approximately EUR 145 million (considering a 2 % discount rate). This approach can also be applied to other volcanic regions, geologic hazards and economic sectors.


2021 ◽  
Author(s):  
Matthew Johnson ◽  
Natasha Dowey ◽  
Rebecca Williams ◽  
Pete Rowley

<p>Pyroclastic density currents (PDCs) are hot, density-driven flows of gas, rock and ash generated during explosive volcanic eruptions, or from the collapse of lava domes (e.g. Fisher, 1979; Branney and Kokelaar, 2002; Cas et al. 2011). They pose a catastrophic geological hazard and have caused >90 000 deaths since 1600AD (Auker et al. 2013). Improved understanding of PDCs will enable us to better understand the explosive eruptions that generate them, improving our preparedness for future volcanic events. However, these deadly hazards are rarely observed up close and are difficult to analyse in real-time. To understand the flow dynamics of density currents we must use models and interpretations of their deposits (e.g. Smith N and Kokelaar, 2013; Rowley et al. 2014, Williams et al. 2014, Sulpizio et al. 2014; Lube et al. 2019, Smith G 2018, 2020).</p><p>The deposits of pyroclastic density currents, known as ‘ignimbrites’ can reveal important clues about how these deadly volcanic hazards behave in time and space Reverse grading in an ignimbrite can be interpreted in different ways (Branney & Kokelaar, 2002). It could record a growing eruption intensity through time - where increasingly larger clasts are introduced into the pyroclastic density current. Alternatively, it could record Kinematic sorting (the ‘muesli effect’) and transport processes within the current where larger particles became increasingly likely to be deposited as the current wanes (Palladino & Valentine,1995). The link between current dynamics and reverse grading is currently untested in aerated granular currents.</p><p>This project seeks to investigate the relationship between current dynamics and deposit architecture, specifically by considering granular sorting mechanisms in unidirectional flow. We will use an analogue flume (following methods in Rowley et. al., 2014, and Smith G et al., 2018, 2020) to explore how reverse grading and lateral grading may be related to changes in grain sizes at source versus kinematic sorting processes. A mix of grain sizes will be incorporated into the current via a hopper which allows for the starting composition of the current to be varied e.g. homogenous mix versus layered. Photographs of the deposit will be taken through the transparent sidewall of the flume and analysed using image analysis software. These experiments will be complimented by static tests of kinematic sorting, where a Perspex column will be sliced to reveal internal 3d architecture. This project will contribute to our understanding of lithofacies architecture in the field, and help to quantity how we interpret the sedimentation of ignimbrites.</p><p><em>References</em></p><p>Auker et al. (2013) https://doi.org/10.1186/2191-5040-2-2</p><p>Branney and Kokelaar (2002) https://doi.org/10.1144/GSL.MEM.2003.027</p><p>Cas et al. (2011) Bulletin of Volcanology 731583 https://doi.org/10.1007/s00445-011-0564-y</p><p>Fisher (1979) https://doi.org/10.1016/0377- 0273(79)90008-8    </p><p>Lube et al. (2019) https://doi.org/10.1038/s41561-019-0338-2</p><p>Palladino & Valentine (1995). https://doi.org/10.1016/0377-0273(95)00036-4</p><p>Rowley et al. (2014) https://doi.org/10.1007/s00445-014-0855-1</p><p>Smith N. and Kokelaar (2013) https://doi.org/10.1007/s00445-013-0768-4</p><p>Smith G. et al. (2018) https://doi.org/10.1007/s00445-018-1241-1</p><p>Smith, G. et al. (2020). https://doi.org/10.1038/s41467-020-16657-z</p>


1999 ◽  
Vol 51 (2) ◽  
pp. 195-211 ◽  
Author(s):  
Michael R. Waters ◽  
Steven L. Forman ◽  
James M. Pierson

AbstractDiring Yuriakh, an archaeological site on the highest terrace of the Lena River in subarctic eastern Siberia, provides evidence for the oldest and northern-most Early Paleolithic occupation in Asia. Stratigraphic and sedimentological studies at the site show that artifacts occur on a single eolian deflation surface that is underlain by fluvial sediments with inset cryogenic sand wedges and overlain by eolian deposits. Thermoluminescence ages on the fine-grained extracts from the eolian sediments and sand wedges that bound the artifact level indicate that the occupation occurred >260,000 yr B.P. and may possibly date between 270,000 and 370,000 yr B.P. This study documents that the artifacts from Diring Yuriakh are an order of magnitude older than artifacts from any previously reported site from Siberia. The antiquity and subarctic location of Diring Yuriakh indicates that people developed a subsistence strategy capable of surviving rigorous conditions in Siberia by ≥260,000 yr B.P.


2018 ◽  
Vol 18 (2) ◽  
pp. 429-444 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM–MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance–size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12–15 × 108 m3 gives a mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche must have flowed further downstream and beyond the current DAD extent. Assessments of the DAD incorporating the topographic constraints can provide further insights into the risk and mitigation of potential disasters in the study area.


Sign in / Sign up

Export Citation Format

Share Document