Role of viruses in biosphere

Author(s):  
Valentin Sapunov

<p>Presented work is synthesis of both literature data and own efforts on study of virus transduction and demography models. The aim would be considering of viruses and other sub-cell organisms as needful part of life on Earth basing on fundamental biology and ecology. It is important to understand the negative consequences for humanity and the biosphere of extreme outbreaks of dangerous viruses (Spanish flu, AIDS, etc.). Viruses were discovered by the Russian scientist D. Ivanovsky in 1892 and named "filtering virus". Having the size of a molecule, it passes freely through filters and masks. In the early twentieth century, the Russian scientist V. Vernadsky predicted the existence of a single information field of the biosphere. In 60-s of XX century was opened to the genetic code, which was uniform in all organisms (G. Korana, etc.). 70-ies the phenomenon of "horizontal transfer," i.e., transferability of information among all living organisms on the planet without a sexual process (B. McClintock, M. Golubovsky, etc.) was discovered. Some viruses (e.g. T4) are the most studied organisms on Earth due to its relative simplicity. The number of virus types is not estimated, but can be measured in millions. The number of virus individuals on the planet is estimated at 10<sup>39</sup>. Viruses are a necessary part of the biosphere. They create a "biological Internet" in which the information unity of organisms is ensured by the constant transfer of DNA sections between all organisms due to vires transduction. Viral epidemics are an example of co-evolution of higher and lower organisms. It temporarily reduces the number of individual species (for example, the number of people during the Spanish flu decreased by 17 million), but never threatens the existence of a particular species. Just as the medical fight against viruses reduces their population, but does not completely destroy them. The human immune system and the virus gene pool are also in a state of co-evolution. The temporary reduction in the number of the host organism of the virus is further compensated by increased immunity and a rise in the birth rate. Viruses activate the immune system of both individuals and humanity as a whole. Man needs them just as small wars are needed to maintain the combat capability of armies. Forecast of negative and positive consequences of virus reproduction is possible basing of modern mathematical ecology and genetics.</p>

2021 ◽  
Vol 02 (02) ◽  
Author(s):  
Baback Khodadoost ◽  

Recently there have been speculations concerning a possible link between the covid-19 pandemic and al-Muddaththir, the 74th chapter of the Quran. An examination of this chapter presented in this article shows further evidences in support of these speculations. It is shown that indications of not only the current Covid-19 pandemic, but also the horrific 1918 Spanish flu can be detected in chapter 74. The main emphasis of this article will be to demonstrate the timings of the pandemic events as they appear to have been encoded in four of the chapter verses. The concept of Translational-Coding and in particular, its use in decoding one of the time-informing verses will be explained. A remarkable scheme of al-Muddaththir to announce the exact occurring years of the two major pandemics, will also be exposed. Coincidences of the Super Moon occurrences with major events of both, Covid-19 and Spanish flu pandemics, will be shown as the possible reason for “by the moon” swearing in verse 74:32. In connection with these observed coincidences, possible effect of the moon’s differential gravity on suppression of the human immune system during a Super Moon occurrence will be addressed. Some other verses in al-Muddaththir with possible relevance to the pandemic perspective of this chapter will also be discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
D. H. González Maglio ◽  
M. L. Paz ◽  
J. Leoni

Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system.


2008 ◽  
Vol 31 (4) ◽  
pp. 3
Author(s):  
L Barrett ◽  
M Grant ◽  
R Liwski ◽  
K West

Background: The human immune system provides remarkable protection from a plethora of pathogens, but can cause damage when activated for a prolonged time (as inpersistent infections) or against self (autoimmunity). Therefore, mechanisms of immune system downregulation and control are imperative. There is little data on how the immune system is controlled in healthy individuals. We recently described a novel population of white blood cells that constitutively produce the immunomodulatory cytokine interleukin-10 (IL-10). Our objective was to further delineate the distribution of these cells in human and mouse models, as well as potential triggers for interleukin-10 production in vitro. Methods: Human and animal protocols were reviewed and approved by the institutional ethics board and animal care facilities, and informed consent was obtained from all human donors. The ex vivo percentage of peripheral blood CD36^+IL-10^+ mononuclear cells was assessed by intracellular flow cytometry in 10 healthy individuals. IL-10 production after exposure to twoCD36 ligands, thrombospondin and oxidized low density lipoprotein (oxLDL) was measured at 8 hours. Peripheral blood mononuclear cells and splenocytes from BL/6 (n=5) and Balb/c (n=1) micewere assessed for CD36^+IL-10^+ cells ex vivo as well. Results: The percentage of CD36^+IL-10^+ cells in peripheral blood fromhealthy individuals ranges between 0.1% and 0.9%. The percentage was similar in mouse peripheral blood, with a range of 0.4%-1.1%. These cells were also found in mouse spleen at a higher frequency than peripherally (1.1-1.5%). Human CD36^+IL-10^+ cells have more IL-10 when exposed to thrombospondin, oxLDL. Conclusions: Our novel population of IL-10 producing cells is found not only in healthy humans, but also in lymphoid tissue and blood from pathogen free mice. This highlights the evolutionary conservation of the cell across species, and suggests an important homeostatic function. The physiologic ligands for CD36 are ubiquitous in circulation, and ourin vitro data suggests a link between CD36 ligation and IL-10 production. IL-10 is a known immune system modulator, and its production by these cells may help maintain homeostaticcontrol of the immune system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josephine F. Reijneveld ◽  
Mira Holzheimer ◽  
David C. Young ◽  
Kattya Lopez ◽  
Sara Suliman ◽  
...  

AbstractThe cell wall of Mycobacterium tuberculosis is composed of diverse glycolipids which potentially interact with the human immune system. To overcome difficulties in obtaining pure compounds from bacterial extracts, we recently synthesized three forms of mycobacterial diacyltrehalose (DAT) that differ in their fatty acid composition, DAT1, DAT2, and DAT3. To study the potential recognition of DATs by human T cells, we treated the lipid-binding antigen presenting molecule CD1b with synthetic DATs and looked for T cells that bound the complex. DAT1- and DAT2-treated CD1b tetramers were recognized by T cells, but DAT3-treated CD1b tetramers were not. A T cell line derived using CD1b-DAT2 tetramers showed that there is no cross-reactivity between DATs in an IFN-γ release assay, suggesting that the chemical structure of the fatty acid at the 3-position determines recognition by T cells. In contrast with the lack of recognition of DAT3 by human T cells, DAT3, but not DAT1 or DAT2, activates Mincle. Thus, we show that the mycobacterial lipid DAT can be both an antigen for T cells and an agonist for the innate Mincle receptor, and that small chemical differences determine recognition by different parts of the immune system.


Author(s):  
Seyed M Matloobi ◽  
Mohammad Riahi

Reducing the cost of unscheduled shutdowns and enhancing the reliability of production systems is an important goal for various industries; this could be achieved by condition monitoring and artificial intelligence. Cavitation is a common undesired phenomenon in centrifugal pumps, which causes damage and its detection in the preliminary stage is very important. In this paper, cavitation is identified by use of vibration and current signal and artificial immune network that is modeled on the base of the human immune system. For this purpose, first data collection were done by a laboratory setup in health and five stages damage condition; then various features in time, frequency, and time–frequency were extracted from vibration and current signals in addition to pressure and flow rate; next feature selection and dimensions reduction were done by artificial immune method to use for classification; finally, they were used by artificial immune network and some other methods to identify the system condition and classification. The results of this study showed that this method is more accurate in the detection of cavitation in the initial stage compared to methods such as non-linear supportive vector machine, multi-layer artificial neural network, K-means and fuzzy C-means with the same data. Also, selected features with artificial immune system were better than principal component analysis results.


2021 ◽  
Vol 22 (4) ◽  
pp. 1761
Author(s):  
Ilya Lyagin ◽  
Elena Efremenko

Organophosphorus compounds (OPCs) are able to interact with various biological targets in living organisms, including enzymes. The binding of OPCs to enzymes does not always lead to negative consequences for the body itself, since there are a lot of natural biocatalysts that can catalyze the chemical transformations of the OPCs via hydrolysis or oxidation/reduction and thereby provide their detoxification. Some of these enzymes, their structural differences and identity, mechanisms, and specificity of catalytic action are discussed in this work, including results of computational modeling. Phylogenetic analysis of these diverse enzymes was specially realized for this review to emphasize a great area for future development(s) and applications.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A763-A763
Author(s):  
Remko Schotte ◽  
Julien Villaudy ◽  
Martijn Kedde ◽  
Wouter Pos ◽  
Daniel Go ◽  
...  

BackgroundAdaptive immunity to cancer cells forms a crucial part of cancer immunotherapy. Recently, the importance of tumor B-cell signatures were shown to correlate with melanoma survival. We investigated whether tumor-targeting antibodies could be isolated from a patient that cured (now 13 years tumor-free) metastatic melanoma following adoptive transfer of ex vivo expanded autologous T cells.MethodsPatient‘s peripheral blood B cells were isolated and tested for the presence of tumor-reactive B cells using AIMM’s immmortalisation technology. Antibody AT1412 was identified by virtue of its differential binding to melanoma cells as compared to healthy melanocytes. AT1412 binds the tetraspanin CD9, a broadly expressed protein involved in multiple cellular activities in cancer and induces ADCC and ADCP by effector cells.ResultsSpontaneous immune rejection of tumors was observed in human immune system (HIS) mouse models implanted with CD9 genetically-disrupted A375 melanoma (A375-CD9KO) tumor cells, while A375wt cells were not cleared. Most notably, no tumor rejection of A375-CD9KO tumors was observed in NSG mice, indicating that blockade of CD9 makes tumor cells susceptible to immune rejection.CD9 has been described to regulate integrin signaling, e.g. LFA-1, VLA-4, VCAM-1 and ICAM-1. AT1412 was shown to modulate CD9 function by enhancing adhesion and transmigration of T cells to endothelial (HUVEC) cells. AT1412 was most potently enhancing transendothelial T-cell migration, in contrast to a high affinity version of AT1412 or other high affinity anti-CD9 reference antibodies (e.g. ALB6). Enhanced immune cell infiltration is also observed in immunodeficient mice harbouring a human immune system (HIS). AT1412 strongly enhanced CD8 T-cell and macrophage infiltration resulting in tumor rejection (A375 melanoma). PD-1 checkpoint blockade is further sustaining this effect. In a second melanoma model carrying a PD-1 resistant and highly aggressive tumor (SK-MEL5) AT1412 together with nivolumab was inducing full tumor rejection, while either one of the antibodies alone did not.ConclusionsThe safety of AT1412 has been assessed in preclinical development and is well tolerated up to 10 mg/kg (highest dose tested) by non human primates. AT1412 demonstrated a half-life of 8.5 days, supporting 2–3 weekly administration in humans. Besides transient thrombocytopenia no other pathological deviations were observed. No effect on coagulation parameters, bruising or bleeding were observed macro- or microscopically. The thrombocytopenia is reversible, and its recovery accelerated in those animals developing anti-drug antibodies. First in Human clinical study is planned to start early 2021.Ethics ApprovalStudy protocols were approved by the Medical Ethical Committee of the Leiden University Medical Center (Leiden, Netherlands).ConsentBlood was obtained after written informed consent by the patient.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 284-288 ◽  
Author(s):  
Brian Hie ◽  
Ellen D. Zhong ◽  
Bonnie Berger ◽  
Bryan Bryson

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence’s grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


2002 ◽  
Vol 21 (9-10) ◽  
pp. 473-478 ◽  
Author(s):  
M P Holsapple

A workshop entitled ‘Developmental Immunotoxicology and Risk Assessment’ was held on 12–13 June 2001, in Washington, DC. The workshop was organized jointly by the Immunotoxicology Technical Committee (ITC) of the International Life Sciences Institute's (ILSI) Health and Environmental Sciences Institute (HESI) with input from the U.S. Environmental Protection Agency (EPA). Growing public concern that early exposure of the developing immune system to immunotoxic compounds may cause significant or persistent postnatal immunosuppression prompted the workshop. The main goal of the workshop was to examine scientific questions that underlie developmental immunotoxicity tests and the interpretation of the results as they relate to human risk assessment. A second goal was to provide a framework, based on current scientific knowledge, for the development of meaningful testing guidelines. The workshop focused on a series of questions that included how to address critical windows of exposure, how to develop and apply more predictive endpoints, does early chemical exposure cause transient or permanent effects on the immune system, as well as other related questions. On the first day, experts were invited to give scientific presentations relating to comparative developmental immunology, models of immunosuppression, and the regulatory aspects of developmental immunotoxicology. The second day was devoted to a panel discussion that included all the speakers as well as meeting participants, which attempted to answer each of the specific questions raised at the workshop. In general, it was acknowledged that there are a variety of techniques available for assessing immunosuppression in adult animal models, but there is uncertainty about how to apply these to a developing animal, especially if the goal is to have some standard procedure that can be applied for regulatory risk assessment. It was pointed out that although we know a lot about the developing immune system of individual species, we do not know how to relate the significance of drug or chemical effects on these systems in terms of human hazard. Overall, the panel deemed the area of developmental immunotoxicity to be still in its infancy and outlined strategies that could lead to the development of standard practices.


Sign in / Sign up

Export Citation Format

Share Document