The epicentral fingerprint of earthquakes

Author(s):  
Patrizio Petricca ◽  
Christian Bignami ◽  
Carlo Doglioni

<p>InSAR images allow to detect the coseismic deformation, delimiting the epicentral area where the larger displacement has been concentrated. The main observations are: 1) the most deformed area in the ideal case is elliptical (for dip-slip faults) or quadrilobated (for strike-slip faults) and coincides with the surface projection of the volume coseismically mobilized in the hanging wall of thrusts and normal faults, or the crustal walls adjacent to strike-slip faults; 2) the dimension of the deformed area detected by InSAR scales with magnitude of earthquake and for M≥6 is always larger than 100 km, increasing to more than 550 km<sup>2</sup> for M≈6.5; 3) the seismic epicenter rarely coincide with the area of larger vertical shaking (either downward or upward); 4) the higher macroseismic intensity corresponds to the area of larger vertical displacement, apart from local site amplification effects; 5) outside this area, the vertical displacement is drastically lower, determining the strong attenuation of seismic waves and the decrease of the peak ground acceleration in the surrounding far field area, apart from local site amplifications; 6) the segment of the activated fault constrains the area where the vertical oscillations have been larger, allowing the contemporaneous maximum freedom degree of the crustal volume affected by horizontal maximum shaking, i.e., the near field or epicentral area; 7) therefore, the epicentral area and volume are active, i.e., they coseismically move and are contemporaneously crossed by seismic waves (active volume), whereas the surrounding far field area is mainly fixed and passively crossed by seismic waves (passive volume). Therefore, here we show how the InSAR images of areas affected by earthquakes represent the fingerprint of the epicentral area where the largest shaking has taken place during an earthquake. Seismic hazard assessments should rely on those data.</p>

2015 ◽  
Vol 754-755 ◽  
pp. 897-901
Author(s):  
Saffuan Wan Ahmad ◽  
Azlan Adnan ◽  
Rozaimi Mohd Noor ◽  
Khairunisa Muthusamy ◽  
Sk Muiz Sk Razak ◽  
...  

An attenuation relationship for far field earthquakes considered by strike slip has been developed. The attenuation relationship function was develop using regression analysis. The database consisting of more than 130 peak ground accelerations from seven earthquake sources recorded by Seismology Station in Malaysia have been used to develop the relationship. This study aims to investigate the new relationship attenuation to gain exact peak ground acceleration at the location on site. Based on this study, the location is a structure located at Terengganu seaside.


2013 ◽  
Vol 438-439 ◽  
pp. 1471-1473
Author(s):  
Gong Lian Chen ◽  
Wen Zheng Lu ◽  
Lei Wang ◽  
Qi Wu

In order to study the far-field ground motion characteristics and the attenuation of seismic waves, the peak ground acceleration (velocity, displacement), time of duration and response spectrum of the seismic waves were analyzed in this paper. Through the investigation of earthquake wave propagation process, the seismic attenuation low was analyzed. This study can provide technical support for the seismic design of long period structures and related engineering application.


2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Davorin Penava ◽  
Ines Ivančić ◽  
Olga Bjelotomić Oršulić ◽  
...  

On 28 December 2020, seismic activity in the wider Petrinja area strongly intensified after a period of relative seismological quiescence that had lasted more than 100 years (since the well-known M5.8 Kupa Valley earthquake of 1909, which is known based on the discovery of the Mohorovičić discontinuity). The day after the M5 foreshock, a destructive M6.2 mainshock occurred. Outcomes of preliminary seismological, geological and SAR image analyses indicate that the foreshocks, mainshock and aftershocks were generated due to the (re)activation of a complex fault system—the intersection of longitudinal NW–SE right-lateral and transverse NE–SW left-lateral faults along the transitional contact zone of the Dinarides and the Pannonian Basin. According to a survey of damage to buildings, approximately 15% of buildings were very heavily damaged or collapsed. Buildings of special or outstanding historical or cultural heritage significance mostly collapsed or became unserviceable. A preliminary analysis of the earthquake ground motion showed that in the epicentral area, the estimated peak ground acceleration PGA values for the bedrock ranged from 0.29 to 0.44 g. In the close Petrinja epicentral area that is characterized by the superficial deposits, significant ground failures were reported within local site effects. Based on that finding and building damage, we assume that the resulting peak ground acceleration (PGAsite) values were likely between 0.4 and 0.6 g depending on the local site characteristics and the distance from the epicentre.


2021 ◽  
Vol 8 ◽  
Author(s):  
S. Bello ◽  
R. de Nardis ◽  
R. Scarpa ◽  
F. Brozzetti ◽  
D. Cirillo ◽  
...  

New fault trace mapping and structural survey of the active faults outcropping within the epicentral area of the Campania-Lucania 1980 normal fault earthquake (Mw 6.9) are integrated with a revision of pre-existing earthquake data and with an updated interpretation of the CROP-04 near-vertical seismic profile to reconstruct the surface and depth geometry, the kinematics and stress tensor of the seismogenic fault pattern. Three main fault alignments, organized in high-angle en-echelon segments of several kilometers in length, are identified and characterized. The inner and intermediate ones, i.e. Inner Irpinia (InIF) and Irpinia Faults (IF), dip eastward; the outer Antithetic Fault (AFA) dips westward. Both the InIF and the IF strike NW-SE along the northern and central segments and rotate to W-E along the southern segments for at least 16 km. We provide evidence of surface coseismic faulting (up to 1 m) not recognized before along the E-W segments and document coseismic ruptures with maximum vertical displacement up to ∼1 m where already surveyed from other investigators 40 years ago. Fault/slip data from surface data and a new compilation of focal mechanisms (1980 – 2018) were used for strain and stress analyses to show a coherent NNE-directed least principal stress over time and at different crustal depths, with a crustal-scale deviation from the classic SW-NE tensional direction across the Apennines of Italy. The continuation at depth of the outcropping faults is analyzed along the trace of the CROP-04 profile and with available hypocentral distributions. Integrating all information, a 3D seismotectonic model, extrapolated to the base of the seismogenic layer, is built. It outlines a graben-like structure with a southern E-W bend developed at depth shallower than 10–12 km, at the hanging wall of an extensional NE- to E-dipping extensional basal detachment. In our interpretation, such a configuration implies a control in the stress transfer during the 1980 earthquake ruptures and provides a new interpretation of the second sub-event, occurred at 20 s. Our reconstruction suggests that the latter ruptured a hanging wall NNE-dipping splay of the E-W striking main fault segment and possibly also an antithetic SSW-dipping splay, in two in-sequence episodes.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Author(s):  
Paul Leon Göllner ◽  
Jan Oliver Eisermann ◽  
Catalina Balbis ◽  
Ivan A. Petrinovic ◽  
Ulrich Riller

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emanuele Tondi ◽  
Anna Maria Blumetti ◽  
Mišo Čičak ◽  
Pio Di Manna ◽  
Paolo Galli ◽  
...  

AbstractWe provide here a first-hand description of the coseismic surface effects caused by the Mw 6.4 Petrinja earthquake that hit central Croatia on 29 December 2020. This was one of the strongest seismic events that occurred in Croatia in the last two centuries. Field surveys in the epicentral area allowed us to observe and map primary coseismic effects, including geometry and kinematics of surface faulting, as well as secondary effects, such as liquefaction, sinkholes and landslides. The resulting dataset consists of homogeneous georeferenced records identifying 222 observation points, each of which contains a minimum of 5 to a maximum of 14 numeric and string fields of relevant information. The earthquake caused surface faulting defining a typical ‘conjugate’ fault pattern characterized by Y and X shears, tension cracks (T fractures), and compression structures (P shears) within a ca. 10 km wide (across strike), NW–SE striking right-lateral strike-slip shear zone (i.e., the Petrinja Fault Zone, PFZ). We believe that the results of the field survey provide fundamental information to improve the interpretation of seismological, GPS and InSAR data of this earthquake. Moreover, the data related to the surface faulting may impact future studies focused on earthquake processes in active strike-slip settings, integrating the estimates of slip amount and distribution in assessing the hazard associated with capable transcurrent faults.


2017 ◽  
Vol 114 (37) ◽  
pp. 9820-9825 ◽  
Author(s):  
George A. Thompson ◽  
Tom Parsons

In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Andrej Gosar

Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns.


Author(s):  
Zhongxian Liu ◽  
Jiaqiao Liu ◽  
Sibo Meng ◽  
Xiaojian Sun

Summary An indirect boundary element method (IBEM) is developed to model the two-dimensional (2D) diffraction of seismic waves by a fluid-filled crack in a fluid-saturated poroelastic half-space, using Green's functions computed considering the distributed loads, flow, and fluid characteristics. The influence of the fluid-filled crack on the diffraction characteristics is investigated by analyzing key parameters, such as the excitation frequency, incident angle, crack width and depth, and medium porosity. The results for the fluid-filled crack model are compared to those for the fluid-free crack model under the same conditions. The numerical results demonstrate that the fluid-filled crack has a significant amplification effect on the surface displacements, and that the effect of the depth of the fluid-filled crack is more complex compared to the influence of other parameters. The resonance diffraction generates an amplification effect in the case of normally incident P waves. Furthermore, the horizontal and vertical displacement amplitudes reach 4.2 and 14.1, respectively. In the corresponding case of the fluid-free crack, the vertical displacement amplitude is only equal to 4.1, indicating the amplification effect of the fluid in the crack. Conversely, for normally incident SV waves at certain resonance frequencies, the displacement amplitudes above a fluid-filled crack may be lower than the displacement amplitudes observed in the corresponding case of a fluid-free crack.


Sign in / Sign up

Export Citation Format

Share Document