Impact of seasonal variations and transient colmation layer properties on bacteria and virus transport in bank filtration 

Author(s):  
Dustin Knabe ◽  
He Wang ◽  
Christian Griebler ◽  
Irina Engelhardt

<p>Bank filtration is a sustainable source for drinking water production in urbanized regions but is increasingly at risk by contamination with pathogenic bacteria and viruses from surface water receiving wastewater discharge. While recent advances have improved our process understanding for pathogen transport on laboratory scale, simulations and predictions on field scale under transient conditions, as in bank filtration, are still highly uncertain. To improve our understanding on field scale, we performed a sampling survey over 16 months at an observation well transect in a heterogeneous sand-gravel aquifer of an active bank filtration waterworks at the river Rhine in Germany. Water samples were collected from the river, the production well, and 4 multi-level observation wells. Samples were analysed for main anions/cations, and hygienic indicators (E. coli and coliform bacteria via plate counts, coliphages via plaque assay, and adenoviruses via ddPCR). A two-dimensional reactive transport model was set up using PFLOTRAN to simulate the transport of heat and dissolved species, aerobic respiration, denitrification, and colloid-based transport of bacteria and viruses. For the latter, adsorption to and desorption from the sediment, straining, blocking, and inactivation are considered. Model parameters were estimated from prior knowledge of the site or calibrated with the obtained data using particle swarm optimization.</p><p>Field observations show a strong seasonal variation of river hydraulics with up to 8 m difference in water level, a prolonged low in the summer/fall and short-termed river level increases in the winter. Aerobic respiration was strongly controlled by the temperature variation (6-24°C in groundwater), leading to an increase in oxygen consumption and limited denitrification during the warm summer/fall. Bacteria and virus concentrations in the groundwater were elevated following a flood in the first winter (up to 500 MPN/100mL coliforms, 2 PFU/100mL coliphages, 1000 copies/100mL adenovirus). Measurable concentrations were still observed during the summer (e.g., up to 10 MPN/100mL coliforms, 0.7 PFU/100mL coliphages, 500 copies/mL adenovirus), but concentrations were below the detection limit for most of the second winter, where no significant flood occurred. In the well closest to the river (40 m distance), the concentration reduction compared to the river varied over time between 1 to ≥4 log-units for coliforms, 1.5 to ≥3 log-units for coliphages, and 0.5 to ≥3 log-units for adenoviruses. The model results suggest the main driving processes for the variation in the bacteria and virus concentrations are (i) the changing groundwater velocity (driven by river level variations and pumping rate), (ii) occurrence of low dissolved oxygen concentrations which lower inactivation, and (iii) transient colmation layer properties (permeability and effective grain size). The colmation layer is affected by reworking of riverbed sediments during floods, bio-clogging during summer, and physical clogging due to constant forced infiltration caused by the bank filtration plant. This is supported by the observation of high bacteria concentrations in the aquifer for a short duration after pumps were reactivated following a 40-day maintenance period. Overall, bacteria and virus attenuation during bank filtration was high, only a strong flood resulted in significantly higher contaminant concentrations in the aquifer.</p>

2020 ◽  
Vol 173 ◽  
pp. 115523 ◽  
Author(s):  
Alicia Sanz-Prat ◽  
Janek Greskowiak ◽  
Victoria Burke ◽  
Carlos A. Rivera Villarreyes ◽  
Julia Krause ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wanda Aulya ◽  
Fadhliani Fadhliani ◽  
Vivi Mardina

Water is the main source for life and also the most severe substance caused by pollution. The mandatory parameters for determining microbiological quality of drinking water are total non-fecal Coliform bacteria and Coliform fecal (Escherichia coli). Coliform bacteria are a group of microorganisms commonly used as indicators, where these bacteria can be a signal to determine whether a water source has been contaminated by bacteria or not, while fecal Coliform bacteria are indicator bacteria polluting pathogenic bacteria originating from human feces and warm-blooded animals (mammals) . The water inspection method in this study uses the MPN (Most Probable Number) method which consists of 3 tests, namely, the presumption test, the affirmation test, and the reinforcement test. The results showed that of 15 drinking water samples 8 samples were tested positive for Coliform bacteria with the highest total bacterial value of sample number 1, 15 (210/100 ml), while 7 other samples were negative. From 8 positive Coliform samples only 1 sample was stated to be negative fecal Coliform bacteria and 7 other samples were positive for Coliform fecal bacteria with the highest total bacterial value of sample number 1 (210/100 ml).


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

The objective of this research was to evaluate waters quality in Pari island waters for aquaculture purpose based on bacteriological information conducted in Mei and September 2011. Microbiological parameters analyzed were total density of bacteria for coliforms, E.coli, pathogenic, heterotrophic, halotoleran, phosphate-nitrate-ammonia breaker, and total cells. Method to analyze coliform bacteria was filtration, identification of pathogenic bacteria using biochemical test, density analises for heterotrophic bacteria, analises for phosphate-nitrate-ammonia breaker bacteria using pour plate, and total cell using Acridine Orange Epifluorescence Microscopy. Results showed that the abundance of total coliform cell was about 1000-7000 colony forming unit (cfu)/100 ml. The abundance of heterotrophic, halotolerant, phosphate-nitrate-ammonia bacteria in seawater was (3.6-4.3)x105 cfu/ml, (1.1-1.3)x105 cfu/ml, (0.5-3.44)x103cfu/ml; and (3.6-6.7)x105 cfu/ml, (1.6-2.7)x105 cfu/ml, (0.6-5.22)x103 cfu/ml in sediment, respectively. The total cell of bacteria was (0.05-2.1)x107cells/ml. The dog-conch (Strombus turturella) and blood-clamps (Anadara granosa) can survive in Pari Island and there was a significant increase in sea grass litter with growth average of 0.67 mm/day and 0.90 mm/day. During snails and clamps growth, there were found several genus of pathogenic bacteria such as Salmonella, Vibrio, Aeromonas, Pseudomonas, Citrobacter, Proteus, Shigella, Hafnia, and Yersinia. The results showed that Pari island waters was suitable for developing shellfish aquaculture dog conch and blood clamps. Keywords: bacteria, parameter, shellfish, aquaculture.


2021 ◽  
Author(s):  
Denis Sergeevich Nikolaev ◽  
Nazika Moeininia ◽  
Holger Ott ◽  
Hagen Bueltemeier

Abstract Underground bio-methanation is a promising technology for large-scale renewable energy storage. Additionally, it enables the recycling of CO2 via the generation of "renewable methane" in porous reservoirs using in-situ microbes as bio-catalysts. Potential candidate reservoirs are depleted gas fields or even abandoned gas storages, providing enormous storage capacity to balance seasonal energy supply and demand fluctuations. This paper discusses the underlying bio-methanation process as part of the ongoing research project "Bio-UGS – Biological conversion of carbon dioxide and hydrogen to methane," funded by the German Federal Ministry of Education and Research (BMBF). First, the hydrodynamic processes are assessed, and a review of the related microbial processes is provided. Then, based on exemplary field-scale simulations, the bio-reactive transport process and its consequences for operation are evaluated. The hydrogen conversion process was investigated by numerical simulations on field scale. For this, a two-phase multi-component bio-reactive transport model was implemented by (Hagemann 2018) in the open-source DuMux (Flemisch et al. 2011) simulation toolkit for porous media flow. The underlying processes include the transport of reactants and products, consumption of specific components, and the related growth and decay of the microbial population, resulting in a bio-reactive transport model. The microbial kinetic parameters of methanogenic reactions are taken from the available literature. The simulation study covers different scenarios on conceptional field-scale models, studying the impact of well placement, injection rates, and gas compositions. Due to a significant sensitivity of the simulation results to the bio-conversion kinetics, the field-specific conversion rates must be obtained. Thus, the Bio-UGS project is accompanied by laboratory experiments out of the frame of this paper. Other parameters are rather a matter of design; in the present case of depleted gas fields, those parameters are coupled and can be chosen to convert fully hydrogen and carbon dioxide to methane. Especially the well spacing can be considered the main design parameter in the likely case of a given injection rate and gas composition. This study extends the application of the previously developed code from a homogeneous-2D to the heterogeneous-3D case. The simulations mimic the co-injection of carbon dioxide and hydrogen from a 40 MW electrolysis.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2161
Author(s):  
Ruicheng Zhang ◽  
Nianqing Zhou ◽  
Xuemin Xia ◽  
Guoxian Zhao ◽  
Simin Jiang

Multicomponent reactive transport modeling is a powerful tool for the comprehensive analysis of coupled hydraulic and biochemical processes. The performance of the simulation model depends on the accuracy of related model parameters whose values are usually difficult to determine from direct measurements. In this situation, estimates of these uncertain parameters can be obtained by solving inverse problems. In this study, an efficient data assimilation method, the iterative local updating ensemble smoother (ILUES), is employed for the joint estimation of hydraulic parameters, biochemical parameters and contaminant source characteristics in the sequential biodegradation process of tetrachloroethene (PCE). In the framework of the ILUES algorithm, parameter estimation is realized by updating local ensemble with the iterative ensemble smoother (IES). To better explore the parameter space, the original ILUES algorithm is modified by determining the local ensemble partly with a linear ranking selection scheme. Numerical case studies based on the sequential biodegradation of PCE are then used to evaluate the performance of the ILUES algorithm. The results show that the ILUES algorithm is able to achieve an accurate joint estimation of related model parameters in the reactive transport model.


Author(s):  
Isolde S. Barkow ◽  
Sascha E. Oswald ◽  
Hermann-Josef Lensing ◽  
Matthias Munz

Abstract Bank filtration is considered to improve water quality through microbially mediated degradation of pollutants and is suitable for waterworks to increase their production. In particular, aquifer temperatures and oxygen supply have a great impact on many microbial processes. To investigate the temporal and spatial behavior of selected organic micropollutants during bank filtration in dependence of relevant biogeochemical conditions, we have set up a 2D reactive transport model using MODFLOW and PHT3D under the user interface ORTI3D. The considered 160-m-long transect ranges from the surface water to a groundwater extraction well of the adjacent waterworks. For this purpose, water levels, temperatures, and chemical parameters were regularly measured in the surface water and groundwater observation wells over one and a half years. To simulate the effect of seasonal temperature variations on microbial mediated degradation, we applied an empirical temperature factor, which yields a strong reduction of the degradation rate at groundwater temperatures below 11 °C. Except for acesulfame, the considered organic micropollutants are substantially degraded along their subsurface flow paths with maximum degradation rates in the range of 10−6 mol L−1 s−1. Preferential biodegradation of phenazone, diclofenac, and valsartan was found under oxic conditions, whereas carbamazepine and sulfamethoxazole were degraded under anoxic conditions. This study highlights the influence of seasonal variations in oxygen supply and temperature on the fate of organic micropollutants in surface water infiltrating into an aquifer.


2016 ◽  
Vol 5 (3) ◽  
pp. 157-164
Author(s):  
Wiwid Widyaningsih ◽  
Supriharyono Supriharyono ◽  
Niniek Widyorini

ABSTRAK Kali Wiso merupakan sungai yang berada di tengah kota Jepara. Perairan ini menjadi tempat pembuangan limbah-limbah secara langsung. Limbah tersebut diantaranya limbah domestik, limbah pasar, limbah kapal, serta limbah TPI. Berdasarkan masukan limbah tersebut menjadikan muara ini tercemar. Perairan yang tercemar dapat dilihat dari pengamatan secara fisika, kimia, maupun biologis. Kondisi perairan yang tercemar secara biologis dilihat dari keberadaan bakteri patogen yang ada di perairan. Indikator bakteri yang digunakan yaitu bakteri coliform, karena sifatnya yang berkorelasi positif dengan bakteri patogen lainnya. Pemanfaatan perairan ini digunakan untuk kegiatan pelabuhan, tempat bersandar kapal nelayan, serta kegiatan perikanan yang ada di sekitar perairan Jepara. Oleh karena itu perlu diketahui kepadatan bakteri coliform sehingga dapat bermanfaat sesuai dengan peruntukannya. Tujuan dari penelitian ini adalah untuk mengetahui total bakteri coliform serta mengetahui adanya bakteri Escherichia coli. Penelitain ini dilakukan pada bulan Maret 2016 di Muara Kali Wiso dengan dua kali pengulangan dalam kondisi pasang dan surut. Metode yang digunakan yaitu survei dengan teknik sampling purposive sampling. Metode analisa laboratorium yang digunakan berdasarkan SNI -01-2332-1991. Kepadatan bakteri coliform pada perairan muara Kali Wiso yaitu >110.000 sel/100ml dan bakteri Escherichia coli sebesar >110.000 sel/100ml. Pada kondisi pasang dan surut kepadatan bakteri coliform dan Escherichia coli memiliki nilai perikaraan yang sama, namun tidak menandakan bahwa total bakteri keduanya sama. Kepadatan bakteri coliform dan Escherichia coli telah melebihi batas kriteria mutu air yang telah ditetapkan. Keberadaan bakteri patogen ini bisa mengkontaminasi biota-biota yang ada di perairan. Sehingga jika biota tersebut dikonsumsi oleh manusia bisa menyebabkan gangguan kesehatan secara tidak langsung. Kata kunci: Muara Kali Wiso; Bakteri Coliform; Bakteri Escherichia coli ABSTRACT Kali Wiso is the river in the middle of Jepara. This river receives wastes disposal from surrounding across. The waste including domestic waste, market waste, ship waste, and waste from fish market. Based on the inputs of the waste that made the estuary polluted. Polluted waters can be seen from the observation of physical, chemical, and biological. The conditions of the waters which biologically polluted are recognized from the pathogenic bacteria existing in these waters. The indicator of bacteria used, namely coliform bacteria, because of its positive correlation with other pathogenic bacteria. The utilization of these waters is used for the activities of the port, fishing pout, and fishing activities in the waters around Jepara. Therefore, its important to know the density of coliform bacteria so that can be advantageous according to its purpose. The purpose of this study to determine total of coliform bacteria and the existence of Escherichia coli bacteria. This research conducted in March 2016 at Kali Wiso estuary with on the condition of ups and downs with two repetitions. The method used is a survey with purposive sampling technique. Laboratory analysis method used by ISO -01-2332-1991. The density of coliform bacteria in the waters of the Kali Wiso estuary is >110.000 cells/100ml and Escherichia coli bacteria is >110.000 cells/100ml. On the condition of ups and downs density of coliform bacteria and Escherichia coli have the same approximate value, but it does’nt signify that the total of bacteria both are the same. The density of coliform bacteria and Escherichia coli have exceeded the water quality criteria that have been set. The existence of these pathogenic bacteria can contaminate the biota in aquatic. Therefore, this biotics are consumed by humans, it can cause health problem indirectly. Keywords: Kali Wiso Estuary; Coliform Bacteria; Escherichia coli Bacteria


Sign in / Sign up

Export Citation Format

Share Document