Middle Miocene rise of the Greater Himalaya establishing a new orographic barrier

Author(s):  
Rasmus Thiede ◽  
Dirk Scherler ◽  
Christoph Glotzbach

<p>The Himalaya is the highest and steepest mountain range on Earth and an efficient north-south barrier for moisture-bearing winds. The close coupling of changes in topography, erosion rates, and uplift has previously been interpreted as an expression of a climatic control on tectonic deformation. Here, we present 17 new zircon U/Th-He (ZHe) bedrock-cooling ages from the Sutlej Valley that – together with >100 previously published mica <sup>40</sup>Ar/<sup>39</sup>Ar, zircon and apatite fission track ages – allow us to constrain the crustal cooling and exhumation history over the last ~20 Myr. Using 1D-thermal modeling, we observe a rapid decrease in exhumation rates from >1 km/Myr to <0.5 km/Myr that initiated at ~17-15 Ma across the entire Greater and Tethyan Himalaya, as far north as the north-Himalayan Leo Pargil gneiss dome. This decrease is recognized both in the hanging and footwall of major Miocene shear zones and suggests that cooling is associated to surface erosion rather than to tectonic unroofing. We explain the middle Miocene deceleration of exhumation with major reorganization of Himalayan deformation and the onset of the growth of the Lesser Himalayan duplex. This resulted in accelerated uplift of the Greater Himalaya above a mid-crustal ramp, and thus forming a new efficient orographic barrier. The period of slow exhumation in the upper Sutlej Valley coincides with a period of internal drainage in the south-Tibetan Zada Basin further upstream, which we interpret to be a consequence of tectonic damming of the upper Sutlej River. External drainage of the Zada Basin was re-established ~1 Ma, when we observe exhumation rates in the upper Sutlej Valley to accelerate again. Our new finding document that the location of tectonic deformation processes control the first order spatial pattern of both climatic zones and erosion across the orogen.</p>

2020 ◽  
Author(s):  
Dirk Scherler ◽  
Rasmus Thiede ◽  
Christoph Glotzbach

<p>The Himalaya is the highest and steepest mountain range on Earth and an efficient north-south barrier for moisture-bearing winds. The close coupling of changes in topography, erosion rates, and uplift has previously been interpreted as an expression of a climatic control on tectonic deformation. Here, we present 17 new zircon U/Th-He (ZHe) bedrock-cooling ages from the Sutlej Valley that – together with >100 previously published mica <sup>40</sup>Ar/<sup>39</sup>Ar, zircon and apatite fission track ages – allow us to constrain the crustal cooling and exhumation history over the last ~20 Myr. Using 1D-thermal modeling, we observe a rapid decrease in exhumation rates from >1 km/Myr to <0.4 km/Myr that initiated at 15-13 Ma across the entire Greater Himalaya and the north-Himalayan Leo Pargil gneiss dome, both in the hanging and footwall of major Miocene shear zones, suggesting that cooling is associated to surface erosion and not due to tectonic unroofing. We explain the middle Miocene deceleration of exhumation by the onset of the growth of the Lesser Himalayan duplex, which resulted in accelerated uplift of the Greater Himalaya above a mid-crustal ramp and the establishment of an efficient orographic barrier. The period of slow exhumation in the upper Sutlej Valley coincides with a period of internal drainage in the south-Tibetan Zada Basin farther upstream, which we interpret to be a consequence of tectonic damming of the upper Sutlej River. External drainage of the Zada Basin was re-established at ~1 Ma, when we observe exhumation rates in the upper Sutlej Valley to accelerate again.</p>


2010 ◽  
Vol 28 (1) ◽  
pp. 141-147 ◽  
Author(s):  
C. J. Pan ◽  
K. Krishna Reddy ◽  
H. C. Lai ◽  
S. S. Yang ◽  
C. J. Wong

Abstract. The interaction of the storm circulation with the Central Mountain Range (CMR) of Taiwan is studied with a wind profiler located at the leeside during the invasions of two (Kaemi (200605) and Bopha (200609)) typhoons. The moderate typhoon Kaemi upgraded from a tropical depression on 21 July 2006. It then was made landfall at 15:45 UTC on 24 July 2006 near Cheng-Kung. The weak typhoon Bopha formed at about 12:00 UTC on 5 August 2006 and also landed near Cheng-Kung at around 19:20 UTC on 8 August. A new finding from both typhoons is the vortex splitting into upper and lower parts with the two typhoons that have passed the observation site nearly. For the typhoon Kaemi, demarcation height of the upper-level vortex and lower level is at 2.8 km and passed the site about 3 h earlier than the low-level one. For the typhoon Bopha, the center of the lower-level vortex at 3.5 km locates to the north of the upper-level one at 5.2 km. The re-organization of the split vortexes is found in typhoon Kaemi but not for typhoon Bopha.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Roberto F. Weinberg ◽  
Fabricio A. Caxito ◽  
Leonardo B. L. Lopes ◽  
Lucas R. Tesser ◽  
...  

AbstractDispersion and deformation of cratonic fragments within orogens require weakening of the craton margins in a process of decratonization. The orogenic Borborema Province, in NE Brazil, is one of several Brasiliano/Pan-African late Neoproterozoic orogens that led to the amalgamation of Gondwana. A common feature of these orogens is that a period of extension and opening of narrow oceans preceded inversion and collision. For the case of the Borborema Province, the São Francisco Craton was pulled away from its other half, the Benino-Nigerian Shield, during an intermittent extension event between 1.0–0.92 and 0.9–0.82 Ga. This was followed by inversion of an embryonic and confined oceanic basin at ca. 0.60 Ga and transpressional orogeny from ca. 0.59 Ga onwards. Here we investigate the boundary region between the north São Francisco Craton and the Borborema Province and demonstrate how cratonic blocks became physically involved in the orogeny. We combine these results with a wide compilation of U–Pb and Nd-isotopic model ages to show that the Borborema Province consists of up to 65% of strongly sheared ancient rocks affiliated with the São Francisco/Benino-Nigerian Craton, separated by major transcurrent shear zones, with only ≈ 15% addition of juvenile material during the Neoproterozoic orogeny. This evolution is repeated across a number of Brasiliano/Pan-African orogens, with significant local variations, and indicate that extension weakened cratonic regions in a process of decratonization that prepared them for involvement in the orogenies, that led to the amalgamation of Gondwana.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


Author(s):  
Robert Fritzen ◽  
Victoria Lang ◽  
Vittorio A. Gensini

AbstractExtratropical cyclones are the primary driver of sensible weather conditions across the mid-latitudes of North America, often generating various types of precipitation, gusty non-convective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient due to anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified based on their genesis location. Additionally, bomb cyclones—extratropical cyclones that recorded a latitude normalized pressure fall of 24 hPa in 24-hr—were identified and stratified for additional analysis. Cyclone lifespan across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈ 270 cyclones were tracked across the analysis domain per year, with an average of ≈ 18 year−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 year−1 during the period 1979–1999 to 250 year−1 during the period 2000–2019. Spatially, decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah mountain range. No significant interannual or spatial trends were noted with bomb cyclone frequency.


2014 ◽  
Vol 86 (3) ◽  
pp. 1101-1113 ◽  
Author(s):  
FABRÍCIO A. CAXITO ◽  
ALEXANDRE UHLEIN ◽  
LUIZ F.G. MORALES ◽  
MARCOS EGYDIO-SILVA ◽  
JULIO C.D. SANGLARD ◽  
...  

The Rio Preto fold belt borders the northwestern São Francisco craton and shows an exquisite kilometric doubly-vergent asymmetric fan structure, of polyphasic structural evolution attributed exclusively to the Brasiliano Orogeny (∼600-540 Ma). The fold belt can be subdivided into three structural compartments: The Northern and Southern compartments showing a general NE-SW trend, separated by the Central Compartment which shows a roughly E-W trend. The change of dip of S2, a tight crenulation foliation which is the main structure of the fold belt, between the three compartments, characterizes the fan structure. The Central Compartment is characterized by sub-vertical mylonitic quartzites, which materialize a system of low-T strike slip shear zones (Malhadinha – Rio Preto Shear Zone) crosscutting the central portion of the fold belt. In comparison to published analog models, we consider that the unique structure of the Rio Preto fold belt was generated by the oblique, dextral-sense interaction between the Cristalândia do Piauí block to the north and the São Francisco craton to the south.


2019 ◽  
pp. 23-50
Author(s):  
John Henderson

This chapter discusses the origins and spread of plague in northern Italy. Plague arrived in Italy in 1629 with French and German troops. It is no accident that the initial cases of plague identified in October of 1629 were first in Piedmont in the Val di Susa, west of Turin and near the border with France, and secondly in the Valtellina in Lombardy, subsequently travelling to Lake Como to the north of Milan. Other cities in northern Italy soon became infected and on May 6, 1630, the authorities as far south as Bologna announced the official outbreak of plague. Judging by the rapidity with which plague spread between these northern urban centres, one would have expected the epidemic to have arrived in Tuscany by early May, given that Bologna is only 65 miles north of Florence, but it was delayed by both natural and man-made factors. Tuscany is separated from Reggio-Emilia by the Apennine mountain range, which provided a physical barrier and facilitated the control of traffic coming from the north. The chapter then traces the preventive measures adopted by the health board as the plague approached Tuscany, including cordons sanitaires along frontiers, the removal of the sick to quarantine centres, and the rapid burial of the dead.


2018 ◽  
Vol 156 (07) ◽  
pp. 1265-1284
Author(s):  
EVA VAN DER VOET ◽  
LEONORA HEIJNEN ◽  
JOHN J. G. REIJMER

AbstractIn contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3024 ◽  
Author(s):  
Leonard Dewaele ◽  
Olivier Lambert ◽  
Stephen Louwye

BackgroundProphocaandLeptophocarepresent the oldest known genera of phocine seals, dating from the latest early to middle Miocene. Originally,Prophoca rousseauiandProphoca proximawere described based on fragmentary remains from the Miocene of Belgium. However, several researchers contested the union ofProphoca rousseauiandProphoca proximainto one genus, without providing evidence. The stratigraphic context ofProphocaremained poorly constrained due to the lack of precise data associated with the original specimens collected in the area of Antwerp (north of Belgium).MethodsProphocaandLeptophocaare redescribed and their phylogenetic position among Phocidae is reassessed using PAUP. Dinoflagellate biostratigraphy has been carried out on sediment samples associated with specimens fromProphocaandLeptophocato elucidate their approximate ages.ResultsWhereas the speciesProphoca rousseauiis redescribed,Prophoca proximais considered synonymous toLeptophoca lenis, with the proposal of a new combinationLeptophoca proxima(Van Beneden, 1877). Sediment samples from specimens of both taxa have been dated to the late Langhian–early Serravallian (middle Miocene). Following a reinvestigation ofLeptophoca amphiatlantica, characters from the original diagnosis are questioned and the specimens ofLeptophoca amphiatlanticaare consideredLeptophocacf.L. proxima. In a phylogenetic analysis,Prophoca rousseauiandLeptophoca proximaconstitute early branching stem-phocines.DiscussionLeptophoca proximafrom the North Sea Basin is younger than the oldest known find ofLeptophoca proximafrom North America, which does not contradict the hypothesis that Phocinae originated along the east coast of North America during the late early Miocene, followed by dispersal to Europe shortly after. Morphological features of the appendicular skeleton indicate thatProphoca rousseauiandLeptophoca proximahave archaic locomotory modes, retaining a more prominent use of the fore flipper for aquatic propulsion than extant Phocidae.


2022 ◽  
Vol 193 ◽  
pp. 1
Author(s):  
Sébastien Chevrot ◽  
Matthieu Sylvander ◽  
Antonio Villaseñor ◽  
Jordi Díaz ◽  
Laurent Stehly ◽  
...  

This contribution reviews the challenges of imaging collisional orogens, focusing on the example of the Pyrenean domain. Indeed, important progresses have been accomplished regarding our understanding of the architecture of this mountain range over the last decades, thanks to the development of innovative passive imaging techniques, relying on a more thorough exploitation of the information in seismic signals, as well as new seismic acquisitions. New tomographic images provide evidence for continental subduction of Iberian crust beneath the western and central Pyrénées, but not beneath the eastern Pyrénées. Relics of a Cretaceous hyper-extended and segmented rift are found within the North Pyrenean Zone, where the imaged crust is thinner (10–25 km). This zone of thinned crust coincides with a band of positive Bouguer anomalies that is absent in the Eastern Pyrénées. Overall, the new tomographic images provide further support to the idea that the Pyrénées result from the inversion of hyperextended segmented rift systems.


Sign in / Sign up

Export Citation Format

Share Document