scholarly journals The controls of radionuclide mobility in a siliciclastic aquifer in Hungary: Hydrogeological investigations and geochemical modeling

Author(s):  
Petra Baják ◽  
Katalin Csondor ◽  
Daniele Pedretti ◽  
Muhammad Muniruzzaman ◽  
Bálint Izsák ◽  
...  

<p>Groundwater represents a vast majority of the readily accessible fresh water on Earth and satisfies the demand for drinking water for a large portion of the world population. However, groundwater quality can be seriously threatened by geogenic and anthropogenic contamination with elevated concentrations of hydrocarbons, pesticides, metal(loid)s or radionuclides. Understanding the controls of the release and mobility of these contaminants including radionuclides is critical in proper groundwater management. In the southern foreland of a granitic outcrop in Hungary, gross alpha activity exceeding the 0.1 Bq L<sup>–1</sup> limit was measured in drinking water wells. Nuclide-specific measurements for uranium, radium and radon isotopes were involved. The sampling activities indicate that excess of uranium (3−753 mBq L<sup>−1</sup>) is mainly responsible for the natural radioactivity measured in drinking water. Radium was measured in low activity concentrations (<5–63 mBq L<sup>−1</sup>) with the exception of three specific wells (285–695 mBq L<sup>−1</sup>). Notable radon activity was measured in the spring waters from Velence Hills (101–314 Bq L<sup>−1 </sup>) and in interrelation with the high radium activities. These observations were interpreted in a “groundwater flow system” context. A conceptual model explaining the elevated radioactivity of groundwater was delineated. A geochemical modeling analysis involving redox-controlled kinetic reactions and a surface complexation model was developed to support the conceptual model of uranium mobility. The results suggest that uranium distribution is sensitive to redox changes in the aquifer. Its mobility in groundwater depends on the residence time of water compared to the reaction times controlling the consumption of oxidizing species. The longer the flow route from the recharge point to an observation point where U is measured, the higher the likelihood of finding aquifer reducing conditions and low U concentrations. It is concluded that the joint application of nuclide-specific measurements, hydrogeological approach and geochemical modeling can support safe drinking water management when dealing with the excess of radionuclides in groundwater.</p><p>This topic is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 810980. This study was also supported by the ÚNKP-17-4-III-ELTE-73 New National Excellence Program of the Ministry of Human Capacities (Hungary). The results here presented have been developed in the frame of the MIUR Project “Dipartimenti di Eccellenza 2017—Le Geoscienze per la società: risorse e loro evoluzione”.</p>

Author(s):  
Hanna Falk Erhag ◽  
Ulrika Lagerlöf Nilsson ◽  
Therese Rydberg Sterner ◽  
Ingmar Skoog

AbstractIn 2020, for the first time in history, there were more people in the world aged 60 years and over than there were children below the age of 5 years. The population aged over 65 years is projected to increase from one billion in 2019 to more than two billion in 2050, and those aged over 80 years are projected to increase from 143 to 426 million, with the largest increase occurring in the developing world (UN World Population Prospects, 2019). This demographic trend constitutes the largest global health challenge, according to the World Health Organisation (WHO). The European Union has set it as one of the major challenges in Horizon 2020 and it has important societal implications (European Commission, 2020). The proportion of retired individuals will increase, leading to an increased ratio between those who have exited the workforce and those still active in the labour market. Thus, ageing represents a global societal and scientific challenge requiring integrated efforts, multidisciplinary translational research approaches and social innovations that build on ideas of potentials and capabilities, emphasising the value of old age.


2021 ◽  
Author(s):  
Mohd Usman Khan ◽  
Nachiketa Rai ◽  
Mukesh Kumar Sharma

<p>As contamination in groundwater has been reported from various regions of the Indian subcontinent but no data related to heavy metal contamination of groundwater has been reported for the Bahraich area in the Indo-Gangetic plains. We report the first dataset on arsenic contamination and groundwater hydrogeochemistry, in Bahraich. This includes concentrations of heavy metal such as As, Mn, and Fe, along with major cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>and Mg<sup>2+</sup>) and anions (F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and PO<sub>4</sub><sup>3-</sup>), and dissolved organic carbon (DOC), along with various physico-chemical parameters such as EC, pH, and Eh from samples collected during two extensive field campaigns conducted during pre-monsoon, and post-monsoon seasons respectively. The combined use of geochemical modeling and multivariate statistical approaches such as principal component analysis (PCA) and correlation analysis (CA) suggest several processes affecting the geochemistry of groundwater including the lithological characteristics of aquifers and anthropogenic activities.</p><p>The groundwater of the study area predominantly belongs to the Ca-Mg-HCO<sub>3</sub> type hydrochemical facies. HCO<sub>3</sub><sup>−</sup>/Na<sup>+</sup> and Ca<sup>2+</sup>/Na<sup>+</sup> signatures of groundwater indicate the influence of silicate weathering and carbonate dissolution processes with the insignificant role of evaporate dissolution mechanism. As concentration was found to range from 0.6 μg/L to ~100 μg/L with almost 40% of the collected samples exceeding the WHO defined limit of 10 μg/L for drinking water. 70 % of the groundwater samples were found to have very high Fe concentrations exceeding the WHO guideline of 0.3 mg/l in drinking water. Mn concentrations in the groundwater samples were relatively low with only ~10 % of the samples exceeding the WHO defined limit for Mn (400 μg/L). The majority of the groundwater samples were found to be anoxic in nature showing low NO<sub>3</sub><sup>−</sup> & SO<sub>4</sub><sup>2-</sup> concentrations, high Fe & Mn and DOC concentrations, and negative Eh values.</p><p>Results from this study show that the reductive dissolution mechanism of iron oxyhydroxide is the dominant mechanism responsible for arsenic release in groundwater of the region, ruling out any role of sulfide oxidation and alkali desorption.</p><p> </p><p> </p>


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2013 ◽  
Vol 7 (1) ◽  
pp. 106-118

The formation of Disinfection By-Products (DBPs) in drinking water results from the reaction of chlorine or other disinfectants added to the water with naturally occurring organic materials, and has raised concerns during the last decades because these compounds are harmful for human health. During the present work, the formation of different categories of DBPs was investigated in four water treatment plants (WTP) using chlorine as disinfectant, and in selected points of the distribution network of Athens, Greece, which is supplied from these four WTP, during a period of ten years. The concentrations of DBPs were generally low and the annual mean concentrations always well below the regulatory limit of the European Union (EU) for the total trihalomethanes (TTHMs). The haloacetic acids (HAAs) have not been regulated in the EU, but during this investigation they often occurred in significant levels, sometimes exceeding the levels of TTHMs, which highlights the importance of their monitoring in drinking water. Apart from THMs and HAAs, several other DBPs species were detected at much lower concentrations in the chlorinated waters: chloral hydrate, haloketones and, in a limited number of cases, haloacetonitriles.


2021 ◽  
Author(s):  
Stefanie Holzwarth ◽  
Martin Bachmann ◽  
Bringfried Pflug ◽  
Aimé Meygret ◽  
Caroline Bès ◽  
...  

<p>The objective of the H2020 project “Copernicus Cal/Val Solution (CCVS)” is to define a holistic Cal/Val strategy for all ongoing and upcoming Copernicus Sentinel missions. This includes an improved calibration of currently operational or planned Copernicus Sentinel sensors and the validation of Copernicus core products generated by the payload ground segments. CCVS will identify gaps and propose long-term solutions to address currently existing constraints in the Cal/Val domain and exploit existing synergies between the missions. An overview of existing calibration and validation sources and means is needed before starting the gap analysis. In this context, this survey is concerned with measurement capabilities for aerial campaigns.</p><p>Since decades airborne observations are an essential contribution to support Earth-System model development and space-based observing programs, both in the domains of Earth Observation (radar and optical) as well as for atmospheric research. The collection of airborne reference data can be directly related to satellite observations, since they are collected in ideal validation conditions using well calibrated reference sensors. Many of these sensors are also used to validate and characterize postlaunch instrument performance. The variety of available aircraft equipped with different instrumentations ranges from motorized gliders to jets acquiring data from different heights to the upper troposphere. In addition, balloons are also used as platforms, either small weather balloons with light payload (around 3 kg), or open stratospheric balloons with big payload (more than a ton). For some time now, UAVs/drones are also used in order to acquire data for Cal/Val purposes. They offer a higher flexibility compared to airplanes, plus covering a bigger area compared to in-situ measurements on ground. On the other hand, they also have limitations when it comes to the weight of instrumentation and maximum altitude level above ground. This reflects the wide range of possible aerial measurements supporting the Cal/Val activities.</p><p>The survey will identify the different airborne campaigns. The report will include the description of campaigns, their spatial distribution and extent, ownership and funding, data policy and availability and measurement frequency. Also, a list of common instrumentation, metrological traceability, availability of uncertainty evaluation and quality management will be discussed. The report additionally deals with future possibilities e.g., planned developments and emerging technologies in instrumentation for airborne and balloon based campaigns.</p><p>This presentation gives an overview of the preliminary survey results and puts them in context with the Cal/Val requirements of the different Copernicus Sentinel missions.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 101004242.</p>


2019 ◽  
Vol 17 (3) ◽  
pp. 853-871
Author(s):  
Natacha Jesus Silva ◽  
Diamantino Ribeiro

The partnership agreement between the European Union and the Member States for the implementation of the European Structural and Investment Funds for the period 2014 to 2020 is in its final phase. This study analyzes the multiplier impact on regional investment of the European funds made available to the northern region of Portugal - NUTS III, until September 2018 and intends to answer the following questions: What is the amount invested in the regional economy for each euro of support allocated by the EU through the H2020 program, and what is the percentage distribution of community support versus investment per area of intervention?


2020 ◽  
Author(s):  
Jackie Calderwood ◽  
Rachael Till ◽  
Vytautas Vasiliauskas

This paper presents an emergent co-creative methodology for the conception, making and sharing of narrative artwork for a gamified learning platform. Drawing on cinema, the graphic novel, and comic book art, two unusual characters were developed by Student Activators working with researchers at the Disruptive Media Learning Lab, Coventry University. The creative process began by using Clean Language and Clean Space to bring the artists’ character sketches to life, and developed into a series of basic, linear and interactive narratives with original working practices. Extending this collaboration, the paper is co-authored with the two students involved. The authors reflect from their different perspectives on the Collaborative process, creation of narrative artwork and building of a series of metagames for the BEACONING platform ‘Breaking Educational Barriers with Contextualised Pervasive and Gameful Learning’, co-funded by Horizon 2020 programme of the European Union.


2021 ◽  
Author(s):  
Maija Peltola ◽  
Manon Rocco ◽  
Neill Barr ◽  
Erin Dunne ◽  
James Harnwell ◽  
...  

<p>Even though oceans cover over 70% of the Earth’s surface, the ways in which oceans interact with climate are not fully known. Marine micro-organisms such as phytoplankton can play an important role in regulating climate by releasing different chemical species into air. In air these chemical species can react and form new aerosol particles. If grown to large enough sizes, aerosols can influence climate by acting as cloud condensation nuclei which influence the formation and properties of clouds. Even though a connection of marine biology and climate through aerosol formation was first proposed already over 30 years ago, the processes related to this connection are still uncertain.</p><p>To unravel how seawater properties affect aerosol formation and to identify which chemical species are responsible for aerosol formation, we built two Air-Sea-Interaction Tanks (ASIT) that isolate 1000 l of seawater and 1000 l of air directly above the water. The used seawater was collected from different locations during a ship campaign on board the R/V Tangaroa in the South West Pacific Ocean, close to Chatham Rise, east of New Zealand. Seawater from one location was kept in the tanks for 2-3 days and then changed. By using seawater collected from different locations, we could obtain water with different biological populations. To monitor the seawater, we took daily samples to determine its chemical and biological properties.</p><p>The air in the tanks was continuously flushed with particle filtered air. This way the air had on average 40 min to interact with the seawater surface before being sampled. Our air sampling was continuous and consisted of aerosol and air chemistry measurements. The instrumentation included measurements of aerosol number concentration from 1 to 500 nm and  chemical species ranging from ozone and sulphur dioxide to volatile organic compounds and chemical composition of molecular clusters.</p><p>Joining the seawater and atmospheric data together can give us an idea of what chemical species are emitted from the water into the atmosphere and whether these species can form new aerosol particles. Our preliminary results show a small number of particles in the freshly nucleated size range of 1-3 nm in the ASIT headspaces, indicating that new aerosol particles can form in the ASIT headspaces. In this presentation, we will also explore which chemical species could be responsible for aerosol formation and which plankton groups could be related to the emissions of these species. Combining these results with ambient data and modelling work can shed light on how important new particle formation from marine sources is for climate.</p><p>Acknowledgements: Sea2Cloud project is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 771369).</p>


Sign in / Sign up

Export Citation Format

Share Document