Fully Integrating a Hydraulic Fracturing, Reservoir, and Wellbore Simulator into a Practical Engineering Tool

Author(s):  
Mark McClure

<p>In this talk, I give an overview of our software ResFrac, which fully integrates a ‘true’ hydraulic fracturing simulator and a multiphase reservoir simulator (McClure et al., 2020a). Conventionally, these processes have been described with separate codes, using separate meshes, and with different physics. Integrating these two categories of software is advantageous because it enables seamless description of the entire lifecycle of a well. It is possible to seamlessly integrate wells with complex histories such as frac hits from offset wells, refracs, and huff and puff EOR injection.</p><p>ResFrac has been applied on 25+ studies for operators optimizing development of oil and gas resources in shale and has been commercially licensed by 15+ companies (https://www.resfrac.com/case-studies; https://www.resfrac.com/publications; https://www.resfrac.com/about-us/our-team). The simulator has a modern user-interface with embedded help-documentation, wizards to help set up simulations, automated validators to identify issues with the setup prior to submitting, and plotting capabilities to preview 3D and tabular inputs. Simulations are run on the cloud and results are continuously downloaded to the user’s computer. This allows a user to easily run a large number of simultaneous simulations from their personal computer. The user-interface includes a custom-built and fully-featured visualization tool for 3D visualization and 2D plotting.</p><p>Hydraulic fracturing simulators must handle a diverse set of coupled physics: mechanics of crack propagation and stress shadowing, fluid flow in the fractures, leakoff, transport of fluid additives that impart non-Newtonian flow characteristics, and proppant transport. Proppant transport is particularly complex because proppant settles out into an immobile bed and may screen out at the tip. Many fracturing simulators approximate wellbore flow effects. However, because these effects are closely coupled to fracturing processes (especially in horizontal wells that have multiple simultaneously propagating fractures), we include a fully meshed, detailed wellbore model in the code, along with treatment of perforation pressure drop and near-wellbore tortuosity.</p><p>In the literature, separate constitutive relations are available to describe transport in open cracks, closed unpropped cracks, and closed propped cracks. However, there were not relations in the literature designed to describe transport under conditions transitional between these end-member states. A general numerical simulator must be able to describe all conditions (and avoid discontinuous changes between equations). To address this limitation, we developed a new set of constitutive equations that can smoothly transition between these end-member states – smoothly handling any general combination of aperture, effective normal stress, saturation, proppant volume fraction, and non-Newtonian fluid rheology (McClure et al., 2020).</p><p>The code solves all equations in a fully coupled way, using an adaptive implicit method. The fully coupled approach is chosen because of the tight coupling between many of the key physical processes. Iterative coupling converges very slowly and/or forces excessively small timesteps when tightly coupled processes are handled with iterative or explicit coupling.</p><p>McClure, Kang, Hewson, and Medam. 2020. ResFrac Technical Writeup (v5). arXiv.</p>


2020 ◽  
Vol 35 (6) ◽  
pp. 325-339
Author(s):  
Vasily N. Lapin ◽  
Denis V. Esipov

AbstractHydraulic fracturing technology is widely used in the oil and gas industry. A part of the technology consists in injecting a mixture of proppant and fluid into the fracture. Proppant significantly increases the viscosity of the injected mixture and can cause plugging of the fracture. In this paper we propose a numerical model of hydraulic fracture propagation within the framework of the radial geometry taking into account the proppant transport and possible plugging. The finite difference method and the singularity subtraction technique near the fracture tip are used in the numerical model. Based on the simulation results it was found that depending on the parameters of the rock, fluid, and fluid injection rate, the plugging can be caused by two reasons. A parameter was introduced to separate these two cases. If this parameter is large enough, then the plugging occurs due to reaching the maximum possible concentration of proppant far from the fracture tip. If its value is small, then the plugging is caused by the proppant reaching a narrow part of the fracture near its tip. The numerical experiments give an estimate of the radius of the filled with proppant part of the fracture for various injection rates and leakages into the rock.



2007 ◽  
Author(s):  
Lujun Ji ◽  
Antonin Settari ◽  
Richard Burl Sullivan


2021 ◽  
Author(s):  
Seyhan Emre Gorucu ◽  
Vijay Shrivastava ◽  
Long X. Nghiem

Abstract An existing equation-of-state compositional simulator is extended to include proppant transport. The simulator determines the final location of the proppant after fracture closure, which allows the computation of the permeability along the hydraulic fracture. The simulation then continues until the end of the production. During hydraulic fracturing, proppant is injected in the reservoir along with water and additives like polymers. Hydraulic fracture gets created due to change in stress caused by the high injection pressure. Once the fracture opens, the bulk slurry moves along the hydraulic fracture. Proppant moves at a different speed than the bulk slurry and sinks down by gravity. While the proppant flows along the fracture, some of the slurry leaks off into the matrix. As the fracture closes after injection stops, the proppant becomes immobile. The immobilized proppant prevents the fracture from closing and thus keeps the permeability of the fracture high. All the above phenomena are modelled effectively in this new implementation. Coupled geomechanics simulation is used to model opening and closure of the fracture following geomechanics criteria. Proppant retardation, gravitational settling and fluid leak-off are modeled with the appropriate equations. The propped fracture permeability is a function of the concentration of immobilized proppant. The developed proppant simulation feature is computationally stable and efficient. The time step size during the settling adapts to the settling velocity of the proppants. It is found that the final location of the proppants is highly dependent on its volumetric concentration and slurry viscosity due to retardation and settling effects. As the location and the concentration of the proppants determine the final fracture permeability, the additional feature is expected to correctly identify the stimulated region. In this paper, the theory and the model formulation are presented along with a few key examples. The simulation can be used to design and optimize the amount of proppant and additives, injection timing, pressure, and well parameters required for successful hydraulic fracturing.





Author(s):  
Peter Demian ◽  
Kirti Ruikar ◽  
Tarun Sahu ◽  
Anne Morris

An increasing amount of information is packed into BIMs, with the 3D geometry serving as a central index leading to other information. The 3DIR project investigates information retrieval from such environments. Here, the 3D visualization can be exploited when formulating queries, computing the relevance of information items, or visualizing search results. The need for such a system was specified using workshops with end users. A prototype was built on a commercial BIM platform. Following an evaluation, the system was enhanced to exploit model topology. Relationships between 3D objects are used to widen the search, whereby relevant information items linked to a related 3D object (rather than linked directly to objects selected by the user) are still retrieved but ranked lower. An evaluation of the enhanced prototype demonstrates its effectiveness but highlights its added complexity. Care needs to be taken when exploiting topological relationships, but that a tight coupling between text-based retrieval and the 3D model is generally effective in information retrieval from BIMs.





2019 ◽  
Vol 9 (21) ◽  
pp. 4720 ◽  
Author(s):  
Ge ◽  
Zhang ◽  
Sun ◽  
Hu

Although numerous studies have tried to explain the mechanism of directional hydraulic fracturing in a coal seam, few of them have been conducted on gas migration stimulated by directional hydraulic fracturing during coal mine methane extraction. In this study, a fully coupled multi-scale model to stimulate gas extraction from a coal seam stimulated by directional hydraulic fracturing was developed and calculated by a finite element approach. The model considers gas flow and heat transfer within the hydraulic fractures, the coal matrix, and cleat system, and it accounts for coal deformation. The model was verified using gas amount data from the NO.8 coal seam at Fengchun mine, Chongqing, Southwest China. Model simulation results show that slots and hydraulic fracture can expand the area of gas pressure drop and decrease the time needed to complete the extraction. The evolution of hydraulic fracture apertures and permeability in coal seams is greatly influenced by the effective stress and coal matrix deformation. A series of sensitivity analyses were performed to investigate the impacts of key factors on gas extraction time of completion. The study shows that hydraulic fracture aperture and the cleat permeability of coal seams play crucial roles in gas extraction from a coal seam stimulated by directional hydraulic fracturing. In addition, the reasonable arrangement of directional boreholes could improve the gas extraction efficiency. A large coal seam dip angle and high temperature help to enhance coal mine methane extraction from the coal seam.





2019 ◽  
Vol 874 ◽  
pp. 926-951 ◽  
Author(s):  
D. G. Schaeffer ◽  
T. Barker ◽  
D. Tsuji ◽  
P. Gremaud ◽  
M. Shearer ◽  
...  

Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology, which postulates that the bulk friction coefficient $\unicode[STIX]{x1D707}$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $\unicode[STIX]{x1D719}$ are functions of the inertial number $I$ only. Although the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology that does not suffer from such defects is proposed. In the framework of compressible $I$-dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $\unicode[STIX]{x1D707}(I)$ and $\unicode[STIX]{x1D6F7}(I)$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations.



SPE Journal ◽  
2020 ◽  
pp. 1-19
Author(s):  
Jung Yong Kim ◽  
Lijun Zhou ◽  
Nobuo Morita

Summary Hydraulic fracturing with slickwater is a common practice in developing unconventional resources in North America. The proppant placement in the fractures largely determines the productivity of the well because it affects the conductivity of fractures. Despite the wide use of slickwater fracturing and the importance of proppant placement, the proppant transport is still not fully understood, and the efficiency of the proppant placement is mostly bound to the changes to proppant properties, friction reducers, and guar technology. Although the degradable fiber is currently used in some cases, it has not been well investigated. In this experimental study, we conducted a proppant transport experiment using different fluid compositions of fiber and guar gum in three types of proppant transport slot equipment. After the experiments, simulation was conducted with the commercial fracture software StimPlanTM (NSI Technologies 2020) to simulate and compare the fracture fluid performance with and without the fibers. The results indicate that using degradable fibers with or without the guar gum as a viscosifier can produce a fracture slurry applicable in both conventional and unconventional fracturing operations, helping proppant placement in the reservoir.



Sign in / Sign up

Export Citation Format

Share Document