scholarly journals Global hydrological droughts in the 21st century under a changing hydrological regime

2014 ◽  
Vol 5 (1) ◽  
pp. 649-681 ◽  
Author(s):  
N. Wanders ◽  
Y. Wada ◽  
H. A. J. Van Lanen

Abstract. Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five GCMs and four emission scenarios (RCPs), from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM) was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt) is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%), compared to the substantial increase when the VTM is applied (11.7 to 20%). The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime, has a substantial influence on future hydrological drought characteristics.

2015 ◽  
Vol 6 (1) ◽  
pp. 1-15 ◽  
Author(s):  
N. Wanders ◽  
Y. Wada ◽  
H. A. J. Van Lanen

Abstract. Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs) and four emission scenarios (representative concentration pathways, RCPs), from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM) was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt) is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%), compared to the substantial increase when the VTM is applied (11.7 to 20%). The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a substantial influence on future hydrological drought characteristics.


Author(s):  
Aboli Mendhe ◽  
Ankit Ghode ◽  
Umesh Jibhakate ◽  
Ritik Chalurkar ◽  
Niraj Bhople ◽  
...  

Since the 21st century, the idea of green constructing has gradually become popular again was launched in many countries, which has become a popular alternative to sustainable development construction industry. Over the past few decades, many scholars and experts have done more research on the green structure. Green construction technology is one of the world’s leading topics set to reduce the major impact of the construction industry on the environment, society and the economy. The world has an urgent need for sustainability and an intelligent development as the problem of pollution and global warming grows rapidly around the world. Major climate change has also been noted and experience globally due to the proliferation of Green House Gases (GHG's). The purpose of this paper is to focus on how sustainable constructing material can help reduce the impact of environmental degradation, and produce healthy buildings that are sustainable for the human being and for our environment.


2012 ◽  
Vol 43 (6) ◽  
pp. 902-916 ◽  
Author(s):  
Li Jin ◽  
Paul G. Whitehead ◽  
Martyn N. Futter ◽  
Zunli Lu

The catchment of the River Thames, a principal river system in southern England, is densely populated and highly vulnerable to changes in climate, land use and population. In order to predict its vulnerability to climate change, the Integrated Catchments Model for Nitrogen (INCA-N) has been applied to the whole of the River Thames. The model was calibrated from 1999 to 2006, to simulate streamflow and nitrate (NO3-N) concentrations. Despite the highly variable land use and river flows within the catchment, INCA-N reproduced both the hydrological regime and NO3-N dynamics in the river. A sensitivity analysis was performed on measured flow and in-stream nitrogen transformation rates. It showed that simulated NO3-N concentrations were sensitive to denitrification rates and flow velocity. Measured parameter values were generally within the range of behavioural model simulations. Temperature and precipitation scenarios from the UK Climate Projections 2009 climate model outputs were used to project possible future flow and NO3-N concentration changes. Results showed generally drier hydrological conditions, increased river NO3-N concentration in winter and decreases in summer. An assessment of the planned new reservoir at Abingdon showed that, if managed appropriately, it may help offset the impact of climate change on riverine NO3-N concentrations and London's water supply.


2020 ◽  
Vol 17 ◽  
pp. 191-208
Author(s):  
María P. Amblar-Francés ◽  
Petra Ramos-Calzado ◽  
Jorge Sanchis-Lladó ◽  
Alfonso Hernanz-Lázaro ◽  
María C. Peral-García ◽  
...  

Abstract. The Pyrenees, located in the transition zone of Atlantic and Mediterranean climates, constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions, with potential impact on the availability of water resources, mainly for downstream populations. High-resolution probabilistic climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this line, we have generated high–resolution climate projections for 21st century by applying two statistical downscaling methods (regression for max and min temperatures, and analogue for precipitation) over the Pyrenees region in the frame of the CLIMPY project over a new high-resolution (5 km × 5 km) observational grid using 24 climate models from CMIP5. The application of statistical downscaling to such a high resolution observational grid instead of station data partially circumvent the problems associated to the non-uniform distribution of observational in situ data. This new high resolution projections database based on statistical algorithms complements the widely used EUROCORDEX data based on dynamical downscaling and allows to identify features that are dependent on the particular downscaling method. In our analysis, we not only focus on maximum and minimum temperatures and precipitation changes but also on changes in some relevant extreme indexes, being 1986–2005 the reference period. Although climate models predict a general increase in temperature extremes for the end of the 21st century, the exact spatial distribution of changes in temperature and much more in precipitation remains uncertain as they are strongly model dependent. Besides, for precipitation, the uncertainty associated to models can mask – depending on the zones- the signal of change. However, the large number of downscaled models and the high resolution of the used grid allow us to provide differential information at least at massif level. The impact of the RCP becomes significant for the second half of the 21st century, with changes – differentiated by massifs – of extreme temperatures and analysed associated extreme indexes for RCP8.5 at the end of the century.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
◽  

Abstract This workshop is dedicated on SDGs in the focus of environmental and health issues, as very important and actual topic. One of the characteristics of today's societies is the significant availability of modern technologies. Over 5 billion (about 67%) people have a cellphone today. More than 4.5 billion people worldwide use the Internet, close to 60% of the total population. At the same time, one third of the people in the world does not have access to safe drinking water and half of the population does not have access to safe sanitation. The WHO at UN warns of severe inequalities in access to water and hygiene. Air, essential to life, is a leading risk due to ubiquitous pollution and contributes to the global disease burden (7 million deaths per year). Air pollution is a consequence of traffic and industry, but also of demographic trends and other human activities. Food availability reflects global inequality, famine eradication being one of the SDGs. The WHO warns of the urgency. As technology progresses, social inequality grows, the gap widens, and the environment continues to suffer. Furthermore, the social environment in societies is “ruffled” and does not appear to be beneficial toward well-being. New inequalities are emerging in the availability of technology, climate change, education. The achievement reports on the Sustainable Development Goals (SDGs), also point out to the need of reviewing individual indicators. According to the Sustainable Development Agenda, one of the goals is to reduce inequalities, and environmental health is faced by several specific goals. The Global Burden of Disease is the most comprehensive effort to date to measure epidemiological levels and trends worldwide. It is the product of a global research collaborative and quantifies the impact of hundreds of diseases, injuries, and risk factors in countries around the world. This workshop will also discuss Urban Health as a Complex System in the light of SDGs. Climate Change, Public Health impacts and the role of the new digital technologies is also important topic which is contributing to SDG3, improving health, to SDG4, allowing to provide distance health education at relatively low cost and to SDG 13, by reducing the CO2 footprint. Community Engagement can both empower vulnerable populations (so reducing inequalities) and identify the prior environmental issues to be addressed. The aim was to search for public health programs using Community Engagement tools in healthy environment building towards achievement of SDGs. Key messages Health professionals are involved in the overall process of transformation necessary to achieve the SDGs. Health professionals should be proactive and contribute to the transformation leading to better health for the environment, and thus for the human population.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Tyler Searls ◽  
James Steenberg ◽  
Xinbiao Zhu ◽  
Charles P.-A. Bourque ◽  
Fan-Rui Meng

Models of forest growth and yield (G&Y) are a key component in long-term strategic forest management plans. Models leveraging the industry-standard “empirical” approach to G&Y are frequently underpinned by an assumption of historical consistency in climatic growing conditions. This assumption is problematic as forest managers look to obtain reliable growth predictions under the changing climate of the 21st century. Consequently, there is a pressing need for G&Y modelling approaches that can be more robustly applied under the influence of climate change. In this study we utilized an established forest gap model (JABOWA-3) to simulate G&Y between 2020 and 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 in the Canadian province of Newfoundland and Labrador (NL). Simulations were completed using the province’s permanent sample plot data and surface-fitted climatic datasets. Through model validation, we found simulated basal area (BA) aligned with observed BA for the major conifer species components of NL’s forests, including black spruce [Picea mariana (Mill.) Britton et al.] and balsam fir [Abies balsamea (L.) Mill]. Model validation was not as robust for the less abundant species components of NL (e.g., Acer rubrum L. 1753, Populus tremuloides Michx., and Picea glauca (Moench) Voss). Our simulations generally indicate that projected climatic changes may modestly increase black spruce and balsam fir productivity in the more northerly growing environments within NL. In contrast, we found productivity of these same species to only be maintained, and in some instances even decline, toward NL’s southerly extents. These generalizations are moderated by species, RCP, and geographic parameters. Growth modifiers were also prepared to render empirical G&Y projections more robust for use under periods of climate change.


2008 ◽  
Vol 8 (1) ◽  
pp. 4-10 ◽  

AbstractIn this analysis of the future of our profession, Barbara Tearle starts by looking at the past to see how much the world of legal information has evolved and changed. She considers the nature of the profession today and then identifies key factors which she believes will be of importance in the future, including the impact of globalisation; the potential changes to the legal profession; technology; developments in legal education; increasing commercialisation and changes to the law itself.


2021 ◽  
Author(s):  
Stephanie M. Juice ◽  
Paul G. Schaberg ◽  
Alexandra M. Kosiba ◽  
Carl E. Waite ◽  
Gary J. Hawley ◽  
...  

Abstract The varied and wide-reaching impacts of climate change are occurring across heterogeneous landscapes. Despite the known importance of soils in mediating biogeochemical nutrient cycling, there is little experimental evidence of how soil characteristics may shape ecosystem response to climate change. Our objective was to clarify how soil characteristics modify the impact of climate changes on carbon and nutrient leaching losses in temperate forests. We therefore conducted a field-based mesocosm experiment with replicated warming and snow exclusion treatments on two soils in large (2.4 m diameter), in-field forest sapling mesocosms. We found that nutrient loss responses to warming and snow exclusion treatments frequently varied substantially by soil type. Indeed, in some cases, soil type nullified the impact of a climate treatment. For example, warming and snow exclusion increased nitrogen (N) losses on fine soils by up to four times versus controls, but these treatments had no impact on coarse soils. Generally, the coarse textured soil, with its lower soil-water holding capacity, had higher nutrient losses (e.g., 12-17 times more total N loss from coarse than fine soils), except in the case of phosphate, which had consistently higher losses (23-58%) from the finer textured soil. Furthermore, the mitigation of nutrient loss by increasing tree biomass varied by soil type and nutrient. Our results suggest that potentially large biogeochemical responses to climate change are strongly mediated by soil characteristics, providing further evidence of the need to consider soil properties in Earth system models for improving nutrient cycling and climate projections.


Sign in / Sign up

Export Citation Format

Share Document