scholarly journals Climate change, growing season water deficit and vegetation activity along the north–south transect of eastern China from 1982 through 2006

2012 ◽  
Vol 16 (10) ◽  
pp. 3835-3850 ◽  
Author(s):  
P. Sun ◽  
Z. Yu ◽  
S. Liu ◽  
X. Wei ◽  
J. Wang ◽  
...  

Abstract. Considerable work has been done to examine the relationship between environmental constraints and vegetation activities represented by the remote sensing-based normalized difference vegetation index (NDVI). However, the relationships along either environmental or vegetational gradients are rarely examined. The aim of this paper was to identify the vegetation types that are potentially susceptible to climate change through examining their interactions between vegetation activity and evaporative water deficit. We selected 12 major vegetation types along the north–south transect of eastern China (NSTEC), and tested their time trends in climate change, vegetation activity and water deficit during the period 1982–2006. The result showed significant warming trends accompanied by general precipitation decline in the majority of vegetation types. Despite that the whole transect increased atmospheric evaporative demand (ET0) during the study period, the actual evapotranspiration (ETa) showed divergent trends with ET0 in most vegetation types. Warming and water deficit exert counteracting controls on vegetation activity. Our study found insignificant greening trends in cold temperate coniferous forest (CTCF), temperate deciduous shrub (TDS), and three temperate herbaceous types including the meadow steppe (TMS), grass steppe (TGS) and grassland (TG), where warming exerted more effect on NDVI than offset by water deficit. The increasing growing season water deficit posed a limitation on the vegetation activity of temperate coniferous forest (TCF), mixed forest (TMF) and deciduous broad-leaved forest (TDBF). Differently, the growing season brownings in subtropical or tropical forests of coniferous (STCF), deciduous broad-leaved (SDBF), evergreen broad-leaved (SEBF) and subtropical grasslands (STG) were likely attributed to evaporative energy limitation. The growing season water deficit index (GWDI) has been formulated to assess ecohydrological equilibrium and thus indicating vegetation susceptibility to water deficit. The increasing GWDI trends in CTCF, TCF, TDS, TG, TGS and TMS indicated their rising susceptibility to future climate change.

2012 ◽  
Vol 9 (5) ◽  
pp. 6649-6688 ◽  
Author(s):  
P. Sun ◽  
Z. Yu ◽  
S. Liu ◽  
X. Wei ◽  
J. Wang ◽  
...  

Abstract. Considerable work has been done to examine the relationship between environmental constraints and vegetation activities represented by the remote sensing-based Normalized Difference Vegetation Index (NDVI). However, the relationships along either environmental or vegetation type gradients are rarely examined. The aim of this paper was to identify the vegetation types that are potentially susceptible to climate change through examining the interaction between vegetation activity and water deficit. We selected 12 major vegetation types along the north-south transect of Eastern China (NSTEC), examined their time trends from 1982 to 2006 with respect to climate change, vegetation activity and water deficit. The results showed that all vegetation types experienced warming during the study period, and the majority of them experienced precipitation decline. Warming and growing season water deficit exert counteracting controls on vegetation activity. Our study found insignificant greening trends in the northernmost cold temperate coniferous forest (CTCF), three temperate herbaceous types including the meadow steppe (TMS), grass steppe (TGS) and grassland (TG), where the growing season warming exerted more than offset effect on vegetation activity (phenology) than growing season water deficit. For the three temperate forest including the coniferous (TCF), mixed (TMF) and deciduous-broadleaved (TDBF), growing season water deficit was the main constraint on vegetation activity. Differently, the growing season browning in subtropical or tropical forests of coniferous (STCF), deciduous-broadleaved (SDBF) and evergreen-broadleaved (SEBF) and subtropical grasslands (STG) were likely attributed to decline in sunshine duration due to increased summer cloudiness. Poor water status in TDS, TG, TMS and severe drought in TGS have been identified by using growing season water deficit index (GWDI), suggested these ecosystems were subjected to severe progressing drought that may create greening trend reversal in future. The emerging water deficit in CTCF, TCF and SDBF suggested their rising susceptibility to future climate change.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1230-1233 ◽  
Author(s):  
Zhi Wang ◽  
Shi Rong Liu

In order to explore additional distribution patterns of global change to terrestrial ecosystems, phenology refers to seasonal biological life stages driven by environmental factors, and is considered to be a sensitive and precise indicator of climate change. Therefore, the author developed a ‘bottom-up’ method for first determining the phenological growing season at sample stations, and based on NOAA/AVVHRR, meteorological data, ground phonology observation data, vegetation category data, and so on. The author built a Logistic fitting model on cumulative frequency of NDVI to determine length of greenness period since 1982, then analyzed correlation between NDVI and precipitation, primarily revealed the dynamic mechanism of climate on vegetation. The spatial pattern of average turning green and wilting dates of the growing season correlated significantly with the spatial pattern of average temperatures in spring and winter across the north south transect of eastern China during 1982 to 2003; the growing season extended on average by 5 to 8 days . Temperate desert regions had the trend of increase of desertification.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2020 ◽  
Vol 29 (2) ◽  
Author(s):  
Oiva Niemeläinen ◽  
Antti Hannukkala ◽  
Lauri Jauhiainen ◽  
Kaija Hakala ◽  
Markku Niskanen ◽  
...  

The official variety trials at Rovaniemi, Finland (66.58°N, 26.01°E) in 1980–2017 show a substantial increase in dry matter yields (DMY) of timothy (Phleum pratense), meadow fescue (Festuca pratensis) and tall fescue (Festuca arundinacea), coinciding with a 156 °Cd increase in the average growing season Tsum and a 461 °Cd decrease in the average winter frost sum for the same period. The annual DMY of timothy was 3128, 4668, 8385 and 9352 kg ha-1 in the periods (P) 1980–1989 (P1), 1990–1999 (P2), 2000–2009 (P3), and 2010–2017 (P4). The first cut yielded 1792, 2166, 4008 and 4473, and the second cut 1337, 2503, 4378 and 4879 kg ha-1, respectively. Yields of meadow fescue followed a similar pattern. The first cut was about ten days and the second cut about one week earlier on P4 than on P1. Shorter snow cover period, milder winters, higher live ground cover of timothy in spring, and higher temperature sum during the growing season were most likely responsible for the yield increase. The results indicate a strong impact of climate change on DMY of perennial forage crops in the north.


2019 ◽  
Vol 15 ◽  
pp. 01011
Author(s):  
A. Nesbitt ◽  
S. Dorling ◽  
R. Jones

As cool climate viticulture rapidly expands, the England and Wales wine sector is winning international acclaim, particularly for its sparkling wines, and is attracting significant investment. Supported by warming climate trends during the growing season, wine producers are establishing new vineyards planted predominantly with Pinot Noir and Chardonnay. Grape-friendly weather conditions in 2018 led to a record harvest and may be a sign of good things to come. Long term (100-years) Growing Season Average Temperatures (GSTs) in south-east and south-central England have noticeably increased with 6 of the top 10 warmest growing seasons (April–October), over the last 100 years, occurring since 2005. However, weather and growing season conditions fluctuate markedly from year to year, meaning that yields and grape quality continue to vary significantly. Weather extremes are anticipated to become more frequent under future climate change, further threatening the stability of production. Current uncertainty over future climatic conditions during the growing season and their potential effects on viticulture in the UK exposes both existing producers and potential investors to unquantified risks and opportunities. The CREWS-UK climate resilience research project is generating actionable information on how climate change may affect the wine production sector, to support better decision-making and investment.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 525
Author(s):  
Keliang Zhang ◽  
Lanping Sun ◽  
Jun Tao

Analyzing the effects of climate change on forest ecosystems and individual species is of great significance for incorporating management responses to conservation policy development. Euscaphis japonica (Staphyleaceae), a small tree or deciduous shrub, is distributed among the open forests or mountainous valleys of Vietnam, Korea, Japan, and southern China. Meanwhile, it is also used as a medicinal and ornamental plant. Nonetheless, the extents of E. japonica forest have gradually shrunk as a result of deforestation, together with the regional influence of climate change. The present study employed two methods for modeling species distribution, Maxent and Genetic Algorithm for Rule-set Prediction (GARP), to model the potential distribution of this species and the effects of climate change on it. Our results suggest that both models performed favorably, but GARP outperformed Maxent for all performance metrics. The temperate and subtropical regions of eastern China where the species had been recorded was very suitable for E. japonica growth. Temperature and precipitation were two primary environmental factors affecting the distribution of E. japonica. Under climate change scenarios, the range of suitable habitats for E. japonica will expand geographically toward the north. Our findings may be used in several ways such as identifying currently undocumented locations of E. japonica, sites where it may occur in the future, or potential locations where the species could be introduced and so contribute to the conservation and management of this species.


2008 ◽  
Vol 15 ◽  
pp. 57-60 ◽  
Author(s):  
Peter Rasmussen ◽  
Mikkel Ulfeldt Hede ◽  
Nanna Noe-Nygaard ◽  
Annemarie L. Clarke ◽  
Rolf D. Vinebrooke

The need for accurate predictions of future environmental change under conditions of global warming has led to a great interest in the most pronounced climate change known from the Holocene: an abrupt cooling event around 8200 years before present (present = A.D. 1950), also known as the ‘8.2 ka cooling event’ (ka = kilo-annum = 1000 years). This event has been recorded as a negative δ18O excursion in the central Greenland ice cores (lasting 160 years with the lowest temperature at 8150 B.P.; Johnsen et al. 1992; Dansgaard 1993; Alley et al. 1997; Thomas et al. 2007) and in a variety of other palaeoclimatic archives including lake sediments, ocean cores, speleothems, tree rings, and glacier oscillations from most of the Northern Hemisphere (e.g. Alley & Ágústsdóttir 2005; Rohling & Pälike 2005). In Greenland the maximum cooling was estimated to be 6 ± 2°C (Alley et al. 1997) while in southern Fennoscandia and the Baltic countries pollenbased quantitative temperature reconstructions indicate a maximum annual mean temperature decrease of around 1.5°C (e.g. Seppä et al. 2007). Today there is a general consensus that the primary cause of the cooling event was the final collapse of the Laurentide ice sheet near Hudson Bay and the associated sudden drainage of the proglacial Lake Agassiz into the North Atlantic Ocean around 8400 B.P. (Fig. 1; Barber et al. 1999; Kleiven et al. 2008). This freshwater outflow, estimated to amount to c. 164,000 km3 of water, reduced the strength of the North Atlantic thermohaline circulation and thereby the heat transported to the North Atlantic region, resulting in an atmospheric cooling (Barber et al. 1999; Clark et al. 2001; Teller et al. 2002). The climatic consequences of this meltwater flood are assumed to be a good geological analogue for future climate-change scenarios, as a freshening of the North Atlantic is projected by almost all global-warming models (e.g. Wood et al. 2003; IPCC 2007) and is also currently being registered in the region (Curry et al. 2003). In an ongoing project, the influence of the 8.2 ka cooling event on a Danish terrestrial and lake ecosystem is being investigated using a variety of biological and geochemical proxy data from a sediment core extracted from Højby Sø, north-west Sjælland (Fig. 2). Here we present data on changes in lake hydrology and terrestrial vegetation in response to climate change, inferred from macrofossil data and pollen analysis, respectively.


2020 ◽  
Vol 12 (16) ◽  
pp. 2612
Author(s):  
Barjeece Bashir ◽  
Chunxiang Cao ◽  
Shahid Naeem ◽  
Mehdi Zamani Joharestani ◽  
Xie Bo ◽  
...  

Land degradation reflected by vegetation is a commonly used practice to monitor desertification. To retrieve important information for ecosystem management accurate assessment of desertification is necessary. The major factors that drive vegetation dynamics in arid and semi-arid regions are climate and anthropogenic activities. Progression of desertification is expected to exacerbate under future climate change scenarios, through precipitation variability, increased drought frequency and persistence of dry conditions. This study examined spatiotemporal vegetation dynamics in arid regions of Sindh, Pakistan, using annual and growing season Normalized Difference Vegetation Index (NDVI) data from 2000 to 2017, and explored the climatic and anthropogenic effects on vegetation. Results showed an overall upward trend (annual 86.71% and growing season 82.7%) and partial downward trend (annual 13.28% and growing season 17.3%) in the study area. NDVI showed the highest significant increase in cropland region during annual, whereas during growing season the highest significant increase was observed in savannas. Overall high consistency in future vegetation trends in arid regions of Sindh province is observed. Stable and steady development region (annual 48.45% and growing 42.80%) dominates the future vegetation trends. Based on the Hurst exponent and vegetation dynamics of the past, improvement in vegetation cover is predicted for a large area (annual 44.49% and growing 30.77%), and a small area is predicted to have decline in vegetation activity (annual 0.09% and growing 3.04%). Results revealed that vegetation growth in the study area is a combined result of climatic and anthropogenic factors; however, in the future multi-controls are expected to have a slightly larger impact on annual positive development than climate whereas positive development in growing season is more likely to continue in future under the control of climate variability.


Sign in / Sign up

Export Citation Format

Share Document