scholarly journals Re-discovering Robert E. Horton's Lake Evaporation Formulae: New Directions for Evaporation Physics

2021 ◽  
Author(s):  
Solomon Vimal ◽  
Vijay P. Singh

Abstract. Evaporation from open water is among the most rigorously studied problems in hydrology. Robert E. Horton, unbeknownst to most investigators on the subject, studied it in great detail by conducting experiments and heuristically relating his observations to physical laws. His work furthered known theories of lake evaporation, but it appears that it got dismissed as simply empirical. This is unfortunate, because Horton’s century-old insights on the topic, which we summarize here, seem relevant for contemporary climate change-era problems. In re-discovering his overlooked lake evaporation works, in this paper we: 1) examine his several publications in the period 1915–1944 and identify his theory sources for evaporation physics among scientists of the late 1800s; 2) illustrate his lake evaporation formulae which require several equations, tables, thresholds, and conditions based on physical factors and assumptions; and 3) assess his evaporation results over continental U.S., and analyse the performance of his formula in a subarctic Canadian catchment by comparing it with five other calibrated (aerodynamic and mass transfer) evaporation formulae of varying complexity. We find that Horton’s method, due to its unique variable vapor pressure deficit (VVPD) term, outperforms all other methods by ~ 3–15 % of R2 consistently across timescales (days to months), and an order of magnitude higher at sub-daily scales (we assessed up to 30 mins). Surprisingly, when his method uses input vapor pressure disaggregated from reanalysis data, it still outperforms other methods which use local measurements. This indicates that the vapor pressure deficit (VPD) term currently used in all other evaporation methods is not as good an independent control for lake evaporation as Horton's VVPD. Therefore, Horton's evaporation formula is held to be a major improvement in lake evaporation theory which, in part, may: A) supplant or improve existing evaporation formulae including the aerodynamic part of the combination (Penman) method; B) point to new directions in lake evaporation physics as it leads to a "constant" and a non-dimensional ratio – the former is due to him, John Dalton (1802), and Gustav Schübler (1831), and the latter to him and Josef Stefan (1881); C) offer better insights behind the physics of the evaporation paradox (i.e. globally, decreasing trends in pan evaporation are unanimously observed, while the opposite is expected due to global warming). Curiously, his rare observations of convective vapor plumes from lakes may also help explain the mythical origins of Greek deity Venus and the dancing Nereids.

2010 ◽  
Vol 11 (1) ◽  
pp. 105-121 ◽  
Author(s):  
Fiona Johnson ◽  
Ashish Sharma

Abstract Trends of decreasing pan evaporation around the world have renewed interest in evaporation and its behavior in a warming world. Observed pan evaporation around Australia has been modeled to attribute changes in its constituent variables. It is found that wind speed decreases have generally led to decreases in pan evaporation. Trends were also calculated from reanalysis and general circulation model (GCM) outputs. The reanalysis reflected the general pattern and magnitude of the observed station trends across Australia. However, unlike the station trends, the reanalysis trends are mainly driven by vapor pressure deficit changes than wind speed changes. Some of the GCMs modeled the trends well, but most showed an average positive trend for Australia. Half the GCMs analyzed show increasing wind speed trends, and most show larger changes in vapor pressure deficit than would be expected based on the station data. Future changes to open water body evaporation have also been assessed using projections for two emission scenarios. Averaged across Australia, the models show a 5% increase in open water body evaporation by 2070 compared to 1990 levels. There is considerable variability in the model projections, particularly for the aerodynamic component of evaporation. Assumptions of increases in evaporation in a warming world need to be considered in light of the variability in the parameters that affect evaporation.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 131
Author(s):  
Matteo Zucchini ◽  
Arash Khosravi ◽  
Veronica Giorgi ◽  
Adriano Mancini ◽  
Davide Neri

The growth of cherry fruit is generally described using a double sigmoid model, divided into four growth stages. Abiotic factors are considered to be significant components in modifying fruit growth, and among these, the vapor pressure deficit (VPD) is deemed the most effective. In this study, we investigated sweet cherry fruit growth through the continuous, hourly monitoring of fruit transversal diameter over two consecutive years (2019 and 2020), from the beginning of the third stage to maturation (forth stage). Extensometers were used in the field and VPD was calculated from weather data. The fruit growth pattern up to the end of the third stage demonstrated three critical steps during non-rainy days: shrinkage, stabilization and expansion. In the third stage of fruit growth, a partial clockwise hysteresis curve of circadian growth, as a response to VPD, appeared on random days. The pattern of fruit growth during rainy days was not distinctive, but the amount and duration of rain caused a consequent decrease in the VPD and indirectly boosted fruit growth. At the beginning of the fourth stage, the circadian growth changed and the daily transversal diameter vs VPD formed fully clockwise hysteresis curves for most of this stage. Our findings indicate that hysteresis can be employed to evaluate the initial phenological phase of fruit maturation, as a fully clockwise hysteresis curve was observable only in the fourth stage of fruit growth. There are additional opportunities for its use in the management of fruit production, such as in precision fruit farming.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Yugang Zhao ◽  
Zichao Zuo ◽  
Haibo Tang ◽  
Xin Zhang

Icing/snowing/frosting is ubiquitous in nature and industrial processes, and the accretion of ice mostly leads to catastrophic consequences. The existing understanding of icing is still limited, particularly for aircraft icing, where direct observation of the freezing dynamics is inaccessible. In this work, we investigate experimentally the impact and freezing of a water drop onto the supercooled substrate at extremely low vapor pressure, to mimic an aircraft passing through clouds at a relatively high altitude, engendering icing upon collisions with pendant drops. Special attention is focused on the ice coverage induced by an impinging drop, from the perimeter pointing outward along the radial direction. We observed two freezing regimes: (I) spread-recoil-freeze at the substrate temperature of Ts = −15.4 ± 0.2 °C and (II) spread (incomplete)-freeze at the substrate temperature of Ts = −22.1 ± 0.2 °C. The ice coverage is approximately one order of magnitude larger than the frozen drop itself, and counterintuitively, larger supercooling yields smaller ice coverage in the range of interest. We attribute the variation of ice coverage to the kinetics of vapor diffusion in the two regimes. This fundamental understanding benefits the design of new anti-icing technologies for aircraft.


2021 ◽  
Vol 11 (11) ◽  
pp. 4729
Author(s):  
Davide Amato ◽  
Giuseppe Montanaro ◽  
Filippo Vurro ◽  
Nicola Coppedé ◽  
Nunzio Briglia ◽  
...  

Research on organic electrochemical transistor (OECT) based sensors to monitor in vivo plant traits such as xylem sap concentration is attracting attention for their potential application in precision agriculture. Fabrication and electronic aspects of OECT have been the subject of extensive research while its characterization within the plant water relation context deserves further efforts. This study tested the hypothesis that the response (R) of an OECT (bioristor) implanted in the trunk of olive trees is inversely proportional to the water flux density flowing through the plant (Jw). This study also examined the influence on R of vapor pressure deficit (VPD) as coupled/uncoupled with light. R was hourly recorded in potted olive trees for a 10-day period concomitantly with Jw (weight loss method). A subgroup of trees was bagged in order to reduce VPD and in turn Jw, and other trees were located in a walk-in chamber where VPD and light were independently managed. R was tightly sensitive to diurnal oscillation of Jw and at negligible values of Jw (late afternoon and night) R increased. The bioristor was not sensitive to the VPD per se unless a light source was coupled to trigger Jw. This study preliminarily examined the suitability of bioristor to estimate the mean daily nutrients accumulation rate (Ca, K) in leaves comparing chemical and sensor-based procedures showing a good agreement between them opening new perspective towards the application of OECT sensor in precision agricultural cropping systems.


2021 ◽  
pp. 110736
Author(s):  
Juping Ding ◽  
Xiaocong Jiao ◽  
Ping Bai ◽  
Yixin Hu ◽  
Jiayu Zhang ◽  
...  

2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document