scholarly journals Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

2015 ◽  
Vol 12 (2) ◽  
pp. 1599-1631
Author(s):  
A. Hernández-Antonio ◽  
J. Mahlknecht ◽  
C. Tamez-Meléndez ◽  
J. Ramos-Leal ◽  
A. Ramírez-Orozco ◽  
...  

Abstract. Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.


2015 ◽  
Vol 19 (9) ◽  
pp. 3937-3950 ◽  
Author(s):  
A. Hernández-Antonio ◽  
J. Mahlknecht ◽  
C. Tamez-Meléndez ◽  
J. Ramos-Leal ◽  
A. Ramírez-Orozco ◽  
...  

Abstract. Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to other active volcanic systems on Earth.



2020 ◽  
Author(s):  
Silvio Janetz ◽  
Christoph Jahnke ◽  
Frank Wendland ◽  
Hans-Jürgen Voigt

<p>In recent years, deep aquifers (> 50 m below ground level) have become increasingly interesting for the supply of drinking and irrigation water or geothermal use. Understanding the regional flow processes between near-surface and deep aquifer systems is an important criterion for the sustainable management of deep groundwater resources. However, hydrogeological conditions, regional flow rates and aquifer recharge in deep aquifers are largely unknown in many cases. The aims of the present study are therefore to determine (i) groundwater flow velocities in a Cenozoic multi-aquifer system, and (ii) proportion of aquifer recharge into the individual Cenozoic aquifers and timescales to completely replace water in the Cenozoic aquifers (turnover time).  </p><p>The numerical study was carried out in three adjacent groundwater catchment areas in the region of Eastern Brandenburg. In a first step, a hydrogeological 3D model of the entire Cenozoic aquifer system (85 km × 73 km and down to a depth of 0.5 km) was developed, which comprises up to 12 unconsolidated sandy aquifers and 10 confining units (glacial tills, silts and clays). In a second step, a steady-state flow modelling was performed including calibration using natural hydraulic head data from both regional main and deep aquifers.</p><p>The modeling results show that the average groundwater flow velocities decrease from 20-50 m/a in the near-surface Pleistocene main aquifers to 1-2 m/a in the deep Oligocene aquifers. At the same time, the aquifer recharge in the aquifer system decreases substantially with increasing depth. Depending on the catchment geology, the Pleistocene main aquifers are recharged by 65-70 % of infiltration water, while the aquifer recharge of the deep Oligocene aquifers is only 4.5-9.5 %. The calculations of turnover time indicate that the time periods to completely flush the deep aquifers are very long (approx. between 90 and 4600 years). The results thus allow a first quantification of the flow processes between near-surface and deep aquifers as well as the identification of flow paths to develop a utilization concept for deep groundwater resources in the region of Eastern Brandenburg.</p>



2020 ◽  
Vol 13 (2) ◽  
pp. 112-121
Author(s):  
Sudiyar . ◽  
Okto Supratman ◽  
Indra Ambalika Syari

The destructive fishing feared will give a negative impact on the survival of this organism. This study aims to analyze the density of bivalves, distribution patterns, and to analyze the relationship of bivalves with environmental parameters in Tanjung Pura village. This research was conducted in March 2019. The systematic random system method was used for collecting data of bivalves. The collecting Data retrieval divided into five research stasions. The results obtained 6 types of bivalves from 3 families and the total is 115 individuals. The highest bivalve density is 4.56 ind / m², and the lowest bivalves are located at station 2,1.56 ind / m²,  The pattern of bivalve distribution in the Coastal of Tanjung Pura Village is grouping. The results of principal component analysis (PCA) showed that Anadara granosa species was positively correlated with TSS r = 0.890, Dosinia contusa, Anomalocardia squamosa, Mererix meretrix, Placamen isabellina, and Tellinella spengleri were positively correlated with currents r = 0.933.



2021 ◽  
Vol 238 ◽  
pp. 103773
Author(s):  
Christian Moeck ◽  
Andrea L. Popp ◽  
Matthias S. Brennwald ◽  
Rolf Kipfer ◽  
Mario Schirmer


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.



2021 ◽  
Vol 6 (3) ◽  
pp. 64800
Author(s):  
Bahana Aditya Adnan ◽  
Suwarno Hadisusanto ◽  
Purnomo Purnomo

Rafflesia patma is an endemic plant of Pangandaran, West Java which is protected because of its rare status. The purpose of this research is to study the population structure, distribution patterns, and the effect of the physical environment of abundance R. patma in Pananjung Pangandaran Nature Reserve, West Java. The method used in this research was a survey method with a purposive sampling technique. Sampling was conducted using quadrat plots. The population pattern distribution was defined by a standardized Morisita index, and the analysis of abiotic environmental factors was determined by Principal Component Analysis (PCA) using PAST3. The results showed that there were 114 R. patma individuals scattered in several research areas in Pananjung Pangandaran Nature Reserve, they were Gua Parat (3 individuals), Cilegon (13 individuals), Pasir Putih (12 individuals), Badeto (48 individuals), and Curug Leutik (38 individuals). The distribution pattern of R. patma in Pananjung Pangandaran Nature Reserve was clustered with the Morisita index value (Id) > 1. Based on the PCA analysis, results that support the classification of the cluster analysis were obtained. Based on four abiotic environmental conditions analyzed, the most dominant character in influencing the distribution patterns and population structure of R. patma is light intensity. 



2021 ◽  
Author(s):  
Manon Bajard ◽  
Eirik Ballo ◽  
Helge I. Høeg ◽  
Jostein Bakke ◽  
Eivind Støren ◽  
...  

<p>Understanding how agricultural societies were impacted and adapted to past climate variations is critical to face to contemporary climate change and guaranty the food security (#SDG2 Zero Hunger). However, linking climate and change in the behaviour of a population are difficult to evidence. Here, we studied the climate variations of the period between 200 and 1300 CE and its impact on the pre-Viking and Viking societies in Southeastern Norway, including the adaptation and resilience of the agricultural management. This period includes, between 300 and 800 CE, one of the coldest period of the last 2000 years. We used a retrospective approach combining a multi-proxy analysis of lake sediments, including geochemical and palynological analyses, to reconstruct past changes in temperature and agricultural practices during the period 200-1300 CE. We associated variations in Ca/Ti ratio as a result of change in lake productivity with the temperature. The periods 200-300 and 800-1300 CE were warmer than the period between 300 and 800 CE, which is known as the “Dark Ages Cold Period” in the Northern Hemisphere. During this colder period, phases dominated by grazing activities (280-420 CE, 480-580 CE, 700-780 CE) alternated with phases dominated by the cultivation of cereals and hemp (before 280 CE, 420-480 CE, 580-700 CE, and after 800 CE). The alternation of these phases is synchronous of temperature changes. Cold periods are associated to livestock farming, and warmer periods to crop farming. This result suggests that when temperature no longer allowed crop farming, the food production specialized in animal breeding. The result of a Principal Component Analysis show a succession of phases of crisis, adaptation and resilience of the socio-environmental system. The Viking Age (800-1000 CE) started with an increase in temperature and corresponds to the warmest period between 200 and 1300 CE, allowing a larger development of the agriculture practices and society. Our results prove that the pre-Viking society adapted their agricultural practices to the climate variability of the Late Antiquity and that the Vikings expanded with climate warming.</p>



Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 790 ◽  
Author(s):  
Min Lyu ◽  
Zhonghe Pang ◽  
Lihe Yin ◽  
Jun Zhang ◽  
Tianming Huang ◽  
...  

The lowest reaches of a large-scale basin could be the discharge areas of local, intermediate and regional groundwater flow systems with significantly distinct travel distances and travel times. This study aims to delineate the groundwater chemical characteristics and the mechanism controlling the chemical evolution in the lowest reaches of the Wushenzhao Cretaceous basin, NW China. A total of 38 groundwater samples were collected and were chemically classified into five distinct water types by means of a Piper Plot. According to the hydrogeological setting and groundwater age, the spatial distribution of these water types is found to be associated with hierarchically nested groundwater flow systems (local and regional system): Types 1, 2, 3 and 4 belong to the local groundwater flow system, while type 5 belongs to the regional flow system. Graphical plots, stable isotopes and geochemical modeling techniques were used to interpret the observed compositions. The results show the dominance of carbonate and gypsum dissolution in type 1 waters; ion exchange in types 2, 3 and 4; and evaporite dissolution in type 5. In addition, human activities in the form of extensive irrigation also affect the chemical compositions of type 1 water. These findings are important for the sustainable management of groundwater resources in the study area.



2009 ◽  
Vol 36 (14) ◽  
Author(s):  
Richard S. Deitchman ◽  
Steven P. Loheide


1992 ◽  
Vol 70 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
J. W. McCreadie ◽  
M. H. Colbo

Using principal component analysis and cluster and regression analyses, larval macrodistribution of Simulium venustum/verecundum complex cytotypes within a drainage basin and along a stream continuum was investigated. Cytotypes included ACD (= Simulium rostratum Lundström) and AA from the verecundum line of the complex and EFG/C (= Simulium truncatum Lundström), AC(gb) and CC2-3 (combined CC2 and CC3) from the venustum line. Abundance of both AC(gb) and CC2-3 increased with increasing stream size. The abundance of CC2-3 also increased at sites with warmer temperatures and lower conductivity, dissolved oxygen, and pH levels. Cytotype composition changed in a continuous, directional, and predictable (R2 = 52.4–92.2%) manner with increased distance from outlets. It is argued that changes in cytotype composition must be considered in future sampling protocols, as quantitative and qualitative changes in the cytotype assemblage can occur over distances as short as 100 m. Discontinuity in the frequency of the IIL-4 polymorphism suggested restricted gene flow due to limited adult AA dispersal over distances greater than 12 km.



Sign in / Sign up

Export Citation Format

Share Document