scholarly journals DISCRIMINATION AEROSOL FORM CLOUDS USING CATS-ISS LIDAR OBSERVATIONS BASED ON RANDOM FOREST AND SVM ALGORITHMS OVER THE EASTERN PART OF MIDDLE EAST

Author(s):  
F. Brakhasi ◽  
M. Hajeb ◽  
F. Fouladinejad

Abstract. Aerosols and Clouds play an important role in the Earth's environment, climate change and climate models. The Cloud-Aerosol Transport System (CATS) as a lidar remote sensing instrument, from the International Space Station (ISS), provides range-resolved profile measurements of atmospheric aerosols and clouds. Discrimination aerosols from clouds have always been a challenges task in the classification of space-born lidars. In this study, two algorithms including Random Forest (RF) and Support Vector Machine (SVM) were used to tackle the problem in a nighttime lidar data from 18 October 2016 which passes form the western part of Iran. The procedure includes 3 stages preprocessing (improving the signal to noise, generating features, taking training sample), classification (implementing RF and SVM), and postprocessing (correcting misleading classification). Finally, the result of classifications of the two algorithms (RF-SVM) were compared against ground truth samples and Vertical Feature Mask (VFM) of CATS product indicated 0.96–0.94 and 0.88–0.88 respectively. Also, it should be mentioned that a kappa accuracy 0.88 was acquired when we compared VFM against our ground truth samples. Moreover, a visual comparison with Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and RGB products demonstrating that clouds and aerosol can be well detected and discriminated. The experimental results elucidated that the proposed method for classification of space borne lidar observation leads to higher accuracy compared to PDFs based algorithms.

2016 ◽  
Vol 51 (20) ◽  
pp. 2853-2862 ◽  
Author(s):  
Serkan Ballı

The aim of this study is to diagnose and classify the failure modes for two serial fastened sandwich composite plates using data mining techniques. The composite material used in the study was manufactured using glass fiber reinforced layer and aluminum sheets. Obtained results of previous experimental study for sandwich composite plates, which were mechanically fastened with two serial pins or bolts were used for classification of failure modes. Furthermore, experimental data from previous study consists of different geometrical parameters for various applied preload moments as 0 (pinned), 2, 3, 4, and 5 Nm (bolted). In this study, data mining methods were applied by using these geometrical parameters and pinned/bolted joint configurations. Therefore, three geometrical parameters and 100 test data were used for classification by utilizing support vector machine, Naive Bayes, K-Nearest Neighbors, Logistic Regression, and Random Forest methods. According to experiments, Random Forest method achieved better results than others and it was appropriate for diagnosing and classification of the failure modes. Performances of all data mining methods used were discussed in terms of accuracy and error ratios.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7417
Author(s):  
Alex J. Hope ◽  
Utkarsh Vashisth ◽  
Matthew J. Parker ◽  
Andreas B. Ralston ◽  
Joshua M. Roper ◽  
...  

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have tremendous and ever-increasing applications in complex engineering systems; thus, it is important to develop non-destructive and efficient condition monitoring methods to improve damage prediction, thereby avoiding catastrophic failures and reducing standby time. Nondestructive condition monitoring techniques when combined with machine learning applications can contribute towards the stated improvements. Thus, the research question taken into consideration for this paper is “Can machine learning techniques provide efficient damage classification of composite materials to improve condition monitoring using features extracted from acousto-ultrasonic measurements?” In order to answer this question, acoustic-ultrasonic signals in Carbon Fiber Reinforced Polymer (CFRP) composites for distinct damage levels were taken from NASA Ames prognostics data repository. Statistical condition indicators of the signals were used as features to train and test four traditional machine learning algorithms such as K-nearest neighbors, support vector machine, Decision Tree and Random Forest, and their performance was compared and discussed. Results showed higher accuracy for Random Forest with a strong dependency on the feature extraction/selection techniques employed. By combining data analysis from acoustic-ultrasonic measurements in composite materials with machine learning tools, this work contributes to the development of intelligent damage classification algorithms that can be applied to advanced online diagnostics and health management strategies of composite materials, operating under more complex working conditions.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Changyu Shen ◽  
Timothy E Breen ◽  
Lacey E Dobrolecki ◽  
C. Max Schmidt ◽  
George W. Sledge ◽  
...  

Introduction As an alternative to DNA microarrays, mass spectrometry based analysis of proteomic patterns has shown great potential in cancer diagnosis. The ultimate application of this technique in clinical settings relies on the advancement of the technology itself and the maturity of the computational tools used to analyze the data. A number of computational algorithms constructed on different principles are available for the classification of disease status based on proteomic patterns. Nevertheless, few studies have addressed the difference in the performance of these approaches. In this report, we describe a comparative case study on the classification accuracy of hepatocellular carcinoma based on the serum proteomic pattern generated from a Surface Enhanced Laser Desorption/Ionization (SELDI) mass spectrometer. Methods Nine supervised classification algorithms are implemented in R software and compared for the classification accuracy. Results We found that the support vector machine with radial function is preferable as a tool for classification of hepatocellular carcinoma using features in SELDI mass spectra. Among the rest of the methods, random forest and prediction analysis of microarrays have better performance. A permutation-based technique reveals that the support vector machine with a radial function seems intrinsically superior in learning from the training data since it has a lower prediction error than others when there is essentially no differential signal. On the other hand, the performance of the random forest and prediction analysis of microarrays rely on their capability of capturing the signals with substantial differentiation between groups. Conclusions Our finding is similar to a previous study, where classification methods based on the Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry are compared for the prediction accuracy of ovarian cancer. The support vector machine, random forest and prediction analysis of microarrays provide better prediction accuracy for hepatocellular carcinoma using SELDI proteomic data than six other approaches.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5896
Author(s):  
Eddi Miller ◽  
Vladyslav Borysenko ◽  
Moritz Heusinger ◽  
Niklas Niedner ◽  
Bastian Engelmann ◽  
...  

Changeover times are an important element when evaluating the Overall Equipment Effectiveness (OEE) of a production machine. The article presents a machine learning (ML) approach that is based on an external sensor setup to automatically detect changeovers in a shopfloor environment. The door statuses, coolant flow, power consumption, and operator indoor GPS data of a milling machine were used in the ML approach. As ML methods, Decision Trees, Support Vector Machines, (Balanced) Random Forest algorithms, and Neural Networks were chosen, and their performance was compared. The best results were achieved with the Random Forest ML model (97% F1 score, 99.72% AUC score). It was also carried out that model performance is optimal when only a binary classification of a changeover phase and a production phase is considered and less subphases of the changeover process are applied.


Multiple sclerosis (MS) is among the world’s most common neurologic disorder. Severity classification of MS disease is necessary for treatment and medication dosage decisions and to understand the disease progression. To the best of authors’ knowledge, this is the first study for the severity classification of MS disease. In this study, Rough set (RS) approach is applied to discern the three classes (mild, moderate, and severe) of the severity of MS disease. Furthermore, the performance of the RS approach is compared with Machine learning (ML) classifiers namely, random forest, K-nearest neighbour, and support vector machine. The performance is evaluated on the dataset acquired from Multiple sclerosis outcome assessments consortium (MSOAC), Arizona, US. The weighted average accuracy, precision, recall, and specificity values for the RS approach are found to be 84.04%, 76.99%, 76.75%, and 83.84% respectively. However, among the ML classifiers, the performance of random forest classifier is found best for which the weighted average accuracy, precision, recall, and specificity values are 62.19 %, 52.65 %, 56.84 %, and 59.87 % respectively. The RS approach is found much superior to ML classifiers and may be used for MS disease severity classification. This study may be helpful for the clinicians to assess the severity of the MS patients and to take medication and dosage decisions.


Author(s):  
Houjie Li ◽  
Lei Wu ◽  
Jianjun He ◽  
Ruirui Zheng ◽  
Yu Zhou ◽  
...  

The ambiguity of training samples in the partial label learning framework makes it difficult for us to develop learning algorithms and most of the existing algorithms are proposed based on the traditional shallow machine learn- ing models, such as decision tree, support vector machine, and Gaussian process model. Deep neu- ral networks have demonstrated excellent perfor- mance in many application fields, but currently it is rarely used for partial label learning frame- work. This study proposes a new partial label learning algorithm based on a fully connected deep neural network, in which the relationship between the candidate labels and the ground- truth label of each training sample is established by defining three new loss functions, and a regu- larization term is added to prevent overfitting. The experimental results on the controlled U- CI datasets and real-world partial label datasets reveal that the proposed algorithm can achieve higher classification accuracy than the state-of- the-art partial label learning algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Wenbo Pang ◽  
Huiyan Jiang ◽  
Siqi Li

Accurate classification of hepatocellular carcinoma (HCC) image is of great importance in pathology diagnosis and treatment. This paper proposes a concave-convex variation (CCV) method to optimize three classifiers (random forest, support vector machine, and extreme learning machine) for the more accurate HCC image classification results. First, in preprocessing stage, hematoxylin-eosin (H&E) pathological images are enhanced using bilateral filter and each HCC image patch is obtained under the guidance of pathologists. Then, after extracting the complete features of each patch, a new sparse contribution (SC) feature selection model is established to select the beneficial features for each classifier. Finally, a concave-convex variation method is developed to improve the performance of classifiers. Experiments using 1260 HCC image patches demonstrate that our proposed CCV classifiers have improved greatly compared to each original classifier and CCV-random forest (CCV-RF) performs the best for HCC image recognition.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


Sign in / Sign up

Export Citation Format

Share Document