scholarly journals EVALUATING HAND-CRAFTED AND LEARNING-BASED FEATURES FOR PHOTOGRAMMETRIC APPLICATIONS

Author(s):  
F. Remondino ◽  
F. Menna ◽  
L. Morelli

Abstract. The image orientation (or Structure from Motion – SfM) process needs well localized, repeatable and stable tie points in order to derive camera poses and a sparse 3D representation of the surveyed scene. The accurate identification of tie points in large image datasets is still an open research topic in the photogrammetric and computer vision communities. Tie points are established by firstly extracting keypoint using a hand-crafted feature detector and descriptor methods. In the last years new solutions, based on convolutional neural network (CNN) methods, were proposed to let a deep network discover which feature extraction process and representation are most suitable for the processed images. In this paper we aim to compare state-of-the-art hand-crafted and learning-based method for the establishment of tie points in various and different image datasets. The investigation highlights the actual challenges for feature matching and evaluates selected methods under different acquisition conditions (network configurations, image overlap, UAV vs terrestrial, strip vs convergent) and scene's characteristics. Remarks and lessons learned constrained to the used datasets and methods are provided.

2019 ◽  
Vol 8 (4) ◽  
pp. 57 ◽  
Author(s):  
João B. A. Gomes ◽  
Joel J. P. C. Rodrigues ◽  
Ricardo A. L. Rabêlo ◽  
Neeraj Kumar ◽  
Sergey Kozlov

Ambient gas detection and measurement had become essential in diverse fields and applications, from preventing accidents, avoiding equipment malfunction, to air pollution warnings and granting the correct gas mixture to patients in hospitals. Gas leakage can reach large proportions, affecting entire neighborhoods or even cities, causing enormous environmental impacts. This paper elaborates on a deep review of the state of the art on gas-sensing technologies, analyzing the opportunities and main characteristics of the transducers, as well as towards their integration through the Internet of Things (IoT) paradigm. This should ease the information collecting and sharing processes, granting better experiences to users, and avoiding major losses and expenses. The most promising wireless-based solutions for ambient gas monitoring are analyzed and discussed, open research topics are identified, and lessons learned are shared to conclude the study.


2021 ◽  
Vol 13 (12) ◽  
pp. 2340
Author(s):  
Teng Xiao ◽  
Qingsong Yan ◽  
Weile Ma ◽  
Fei Deng

Structure from motion (SfM) has been treated as a mature technique to carry out the task of image orientation and 3D reconstruction. However, it is an ongoing challenge to obtain correct reconstruction results from image sets consisting of problematic match pairs. This paper investigated two types of problematic match pairs, stemming from repetitive structures and very short baselines. We built a weighted view-graph based on all potential match pairs and propose a progressive SfM method (PRMP-PSfM) that iteratively prioritizes and refines its match pairs (or edges). The method has two main steps: initialization and expansion. Initialization is developed for reliable seed reconstruction. Specifically, we prioritize a subset of match pairs by the union of multiple independent minimum spanning trees and refine them by the idea of cycle consistency inference (CCI), which aims to infer incorrect edges by analyzing the geometric consistency over cycles of the view-graph. The seed reconstruction is progressively expanded by iteratively adding new minimum spanning trees and refining the corresponding match pairs, and the expansion terminates when a certain completeness of the block is achieved. Results from evaluations on several public datasets demonstrate that PRMP-PSfM can successfully accomplish the image orientation task for datasets with repetitive structures and very short baselines and can obtain better or similar accuracy of reconstruction results compared to several state-of-the-art incremental and hierarchical SfM methods.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-32
Author(s):  
El-Ghazali Talbi

During the past few years, research in applying machine learning (ML) to design efficient, effective, and robust metaheuristics has become increasingly popular. Many of those machine learning-supported metaheuristics have generated high-quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this article, we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies that might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem and low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic that need further in-depth investigations.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1862
Author(s):  
Alexandros-Georgios Chronis ◽  
Foivos Palaiogiannis ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Panos Kotsampopoulos ◽  
Nikos Hatziargyriou

In this paper, we investigate the economic benefits of an energy community investing in small-scale photovoltaics (PVs) when local energy trading is operated amongst the community members. The motivation stems from the open research question on whether a community-operated local energy market can enhance the investment feasibility of behind-the-meter small-scale PVs installed by energy community members. Firstly, a review of the models, mechanisms and concepts required for framing the relevant concepts is conducted, while a clarification of nuances at important terms is attempted. Next, a tool for the investigation of the economic benefits of operating a local energy market in the context of an energy community is developed. We design the local energy market using state-of-the-art formulations, modified according to the requirements of the case study. The model is applied to an energy community that is currently under formation in a Greek municipality. From the various simulations that were conducted, a series of generalizable conclusions are extracted.


Author(s):  
Akrati Saxena ◽  
Harita Reddy

AbstractOnline informal learning and knowledge-sharing platforms, such as Stack Exchange, Reddit, and Wikipedia have been a great source of learning. Millions of people access these websites to ask questions, answer the questions, view answers, or check facts. However, one interesting question that has always attracted the researchers is if all the users share equally on these portals, and if not then how the contribution varies across users, and how it is distributed? Do different users focus on different kinds of activities and play specific roles? In this work, we present a survey of users’ social roles that have been identified on online discussion and Q&A platforms including Usenet newsgroups, Reddit, Stack Exchange, and MOOC forums, as well as on crowdsourced encyclopedias, such as Wikipedia, and Baidu Baike, where users interact with each other through talk pages. We discuss the state of the art on capturing the variety of users roles through different methods including the construction of user network, analysis of content posted by users, temporal analysis of user activity, posting frequency, and so on. We also discuss the available datasets and APIs to collect the data from these platforms for further research. The survey is concluded with open research questions.


Author(s):  
Yuta Abe ◽  
Yu-ichi Hayashi ◽  
Takaaki Mizuki ◽  
Hideaki Sone

AbstractIn card-based cryptography, designing AND protocols in committed format is a major research topic. The state-of-the-art AND protocol proposed by Koch, Walzer, and Härtel in ASIACRYPT 2015 uses only four cards, which is the minimum permissible number. The minimality of their protocol relies on somewhat complicated shuffles having non-uniform probabilities of possible outcomes. Restricting the allowed shuffles to uniform closed ones entails that, to the best of our knowledge, six cards are sufficient: the six-card AND protocol proposed by Mizuki and Sone in 2009 utilizes the random bisection cut, which is a uniform and cyclic (and hence, closed) shuffle. Thus, a question has arisen: “Can we improve upon this six-card protocol using only uniform closed shuffles?” In other words, the existence or otherwise of a five-card AND protocol in committed format using only uniform closed shuffles has been one of the most important open questions in this field. In this paper, we answer the question affirmatively by designing five-card committed-format AND protocols using only uniform cyclic shuffles. The shuffles that our protocols use are the random cut and random bisection cut, both of which are uniform cyclic shuffles and can be easily implemented by humans.


2021 ◽  
Vol 16 (2) ◽  
pp. 111-135
Author(s):  
Emilio M. Sanfilippo

Information entities are used in ontologies to represent engineering technical specifications, health records, pictures or librarian data about, e.g., narrative fictions, among others. The literature in applied ontology lacks a comparison of the state of the art, and foundational questions on the nature of information entities remain open for research. The purpose of the paper is twofold. First, to compare existing ontologies with both each other and theories proposed in philosophy, semiotics, librarianship, and literary studies in order to understand how the ontologies conceive and model information entities. Second, to discuss some open research challenges that can lead to principled approaches for the treatment of information entities, possibly by getting into account the variety of information entity types found in the literature.


Author(s):  
Sebastian Hoppe Nesgaard Jensen ◽  
Mads Emil Brix Doest ◽  
Henrik Aanæs ◽  
Alessio Del Bue

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.


2013 ◽  
Vol 39 (1) ◽  
pp. 57-85 ◽  
Author(s):  
Alexander Fraser ◽  
Helmut Schmid ◽  
Richárd Farkas ◽  
Renjing Wang ◽  
Hinrich Schütze

We study constituent parsing of German, a morphologically rich and less-configurational language. We use a probabilistic context-free grammar treebank grammar that has been adapted to the morphologically rich properties of German by markovization and special features added to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding with lessons learned, which apply to parsing other morphologically rich and less-configurational languages.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-38
Author(s):  
Lynda Tamine ◽  
Lorraine Goeuriot

The explosive growth and widespread accessibility of medical information on the Internet have led to a surge of research activity in a wide range of scientific communities including health informatics and information retrieval (IR). One of the common concerns of this research, across these disciplines, is how to design either clinical decision support systems or medical search engines capable of providing adequate support for both novices (e.g., patients and their next-of-kin) and experts (e.g., physicians, clinicians) tackling complex tasks (e.g., search for diagnosis, search for a treatment). However, despite the significant multi-disciplinary research advances, current medical search systems exhibit low levels of performance. This survey provides an overview of the state of the art in the disciplines of IR and health informatics, and bridging these disciplines shows how semantic search techniques can facilitate medical IR. First,we will give a broad picture of semantic search and medical IR and then highlight the major scientific challenges. Second, focusing on the semantic gap challenge, we will discuss representative state-of-the-art work related to feature-based as well as semantic-based representation and matching models that support medical search systems. In addition to seminal works, we will present recent works that rely on research advancements in deep learning. Third, we make a thorough cross-model analysis and provide some findings and lessons learned. Finally, we discuss some open issues and possible promising directions for future research trends.


Sign in / Sign up

Export Citation Format

Share Document