scholarly journals Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina)

2012 ◽  
Vol 12 (6) ◽  
pp. 1873-1882 ◽  
Author(s):  
G. Marcato ◽  
G. Bossi ◽  
F. Rivelli ◽  
L. Borgatti

Abstract. For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

2020 ◽  
Vol 10 (22) ◽  
pp. 7960
Author(s):  
Federica Cotecchia ◽  
Francesca Santaloia ◽  
Vito Tagarelli

Nowadays, landslides still cause both deaths and heavy economic losses around the world, despite the development of risk mitigation measures, which are often not effective; this is mainly due to the lack of proper analyses of landslide mechanisms. As such, in order to achieve a decisive advancement for sustainable landslide risk management, our knowledge of the processes that generate landslide phenomena has to be broadened. This is possible only through a multidisciplinary analysis that covers the complexity of landslide mechanisms that is a fundamental part of the design of the mitigation measure. As such, this contribution applies the “stage-wise” methodology, which allows for geo-hydro-mechanical (GHM) interpretations of landslide processes, highlighting the importance of the synergy between geological-geomorphological analysis and hydro-mechanical modeling of the slope processes for successful interpretations of slope instability, the identification of the causes and the prediction of the evolution of the process over time. Two case studies are reported, showing how to apply GHM analyses of landslide mechanisms. After presenting the background methodology, this contribution proposes a research project aimed at the GHM characterization of landslides, soliciting the support of engineers in the selection of the most sustainable and effective mitigation strategies for different classes of landslides. This proposal is made on the assumption that only GHM classification of landslides can provide engineers with guidelines about instability processes which would be useful for the implementation of sustainable and effective landslide risk mitigation strategies.


2021 ◽  
Vol 292 ◽  
pp. 03088
Author(s):  
Sijiang Liu ◽  
Mingyuan Wan

In late 2019, the first SARS-CoV-2 case was reported in Wuhan, China. It has been known as a deadly virus that could cause many severe health complications, particularly respiratory illnesses. With its extraordinary ability to transmit between humans, the coronavirus disease 2019 (COVID-19) has spread worldwide, including Antarctica and the Arctic region. On 11th March 2020, the World Health Organization (WHO) declared the COVID-19 as a public health emergency worldwide (global pandemic) to raise global awareness of the dangerous virus. With immediate and efficient public health interventions, progress has been seen in many countries such as China and New Zealand. Therefore, in this review, we summarized the important public health risk mitigation measures applied in China.


2009 ◽  
Vol 22 ◽  
pp. 59-65 ◽  
Author(s):  
G. Marcato ◽  
A. Pasuto ◽  
F. R. Rivelli

Abstract. Slope processes such as slides and debris flows, are among the main events that induce effects on the Rio Grande sediment transport capacity. The slides mainly affect the slope of the Rio Grande river basin while debris and mud flows phenomena take place in the tributary valleys. In the past decades several mass movements occurred causing victims and great damages to roads and villages and therefore hazard assessment and risk mitigation is of paramount importance for a correct development of the area. This is also an urgent need since the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. The growing tourism business may lead to an uncontrolled urbanization of the valley with the consequent enlargement of threatened areas. In this framework mitigation measures have to take into account not only technical aspects related to the physical behaviour of the moving masses but also environmental and sociological factors that could influence the effectiveness of the countermeasures. Mitigation of landslide effects is indeed rather complex because of the large extension of the territory and the particular geological and geomorphological setting. Moreover the necessity to maintain the natural condition of the area as prescribed by UNESCO, make this task even more difficult. Nowadays no in-depth study of the entire area exists, therefore an integrated and multidisciplinary investigation plan is going to be set up including geological and geomorphological investigations as well as archaeological and historical surveys. The better understanding of geomorphological evolution processes of the Quebrada de Humahuaca will bridge the gap between the necessity of preservation and the request of safety keeping of the recommendation by UNESCO.


2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 372-394 ◽  
Author(s):  
Vitor Silva ◽  
Desmond Amo-Oduro ◽  
Alejandro Calderon ◽  
Catarina Costa ◽  
Jamal Dabbeek ◽  
...  

Since 2015, the Global Earthquake Model (GEM) Foundation and its partners have been supporting regional programs and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset comprising structural and occupancy information regarding the residential, commercial and industrial buildings, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate probabilistic earthquake risk globally using the OpenQuake-engine, an open-source software for seismic hazard and risk analysis. This model allows estimating a number of risk metrics such as annualized average losses or aggregated losses for particular return periods, which are fundamental to the development and implementation of earthquake risk mitigation measures.


2013 ◽  
Vol 1 (2) ◽  
pp. 1689-1747
Author(s):  
F. E. Gruber ◽  
M. Mergili

Abstract. We present a model framework for the regional-scale analysis of high-mountain multi-hazard and -risk, implemented with the Open Source software package GRASS GIS. This framework is applied to a 98 300 km2 study area centred in the Pamir (Tajikistan). It includes (i) rock slides, (ii) ice avalanches, (iii) periglacial debris flows, and (iv) lake outburst floods. First, a hazard indication score is assigned to each relevant object (steep rock face, glacier or periglacial slope, lake). This score depends on the susceptibility and on the expected event magnitude. Second, the possible travel distances, impact areas and, consequently, impact hazard indication scores for all types of processes are computed using empirical relationships. These scores are finally superimposed with an exposure score derived from the type of land use, resulting in a raster map of risk indication scores finally discretized at the community level. The analysis results are presented and discussed at different spatial scales. The major outcome of the study, a set of comprehensive regional-scale hazard and risk indication maps, shall represent an objective basis for the prioritization of target communities for further research and risk mitigation measures.


2021 ◽  
Author(s):  
Stefano Bagli ◽  
Paolo Mazzoli ◽  
Francesca Renzi ◽  
Valerio Luzzi ◽  
Simone Persiano ◽  
...  

<p>Floods are a global hazard that may have adverse impacts on a wide-range of social, economic, and environmental processes. Nowadays our cities are flooding with increased occurrence due to more severe weather events but also due to anthropogenic pressures like soil sealing, urban growth and, in some areas,  land subsidence. Frequency and intensity of extreme floods are expected to further increase in the future in many places due to climate change. </p><p>The characterisation of flood events and of their multi-hazard nature is a fundamental step in order to maximise the resilience of cities to potential flood losses and damages. </p><p>SaferPLACES employs innovative climate, hydrological and raster-based flood hazard and economic modelling techniques to assess pluvial, fluvial and coastal flood hazards and risks in urban environments under current and future climate scenarios.</p><p>SaferPLACES platform provides a cost-effective and user-friendly cloud-based solution for flood hazard and risk mapping. Moreover SaferPLACES supports multiple stakeholders in designing and assessing multiple mitigation measures such as flood barriers, water tanks, green-blue based solutions and building specific damage mitigation actions.</p><p>The intelligence behind the SaferPLACES platform integrates innovative fast DEM-based flood hazard assessment methods and Bayesian damage models, which are able to provide results in short computation times by exploiting the power of cloud computing.</p><p>A beta version of the platform is available at platform.saferplaces.co and active for four pilot cities: Rimini and Milan in Italy, Pamplona in Spain and Cologne in Germany.</p><p>SaferPLACES (saferplaces.co) is a research project founded by EIT Climate-KIC (www.climate-kic.org).</p>


2020 ◽  
Author(s):  
Claudia Strada ◽  
Davide Bertolo ◽  
Volkmar Mair ◽  
Marco Paganone

<p>The Valle d'Aosta Region and the Autonomous Province of Bolzano territories include the highest mountain areas of Italy, where most of the communication infrastructures or strategic activities are totally or in part partially exposed to the rockfall hazards.  </p><p>For this reason, the two administrations have established an operational cooperation in order to compare their procedures and to define the criteria and best practices to prioritize and project the mitigation the rockfall mitigation measures. The result achieved by the work group have inspired a new incoming version of the Italian technical standard UNI 11211 “Rockfall protective measures”.   </p><p>As a part of the rockfall risk assessment of the designing the mitigation measures, it is necessary to assess the actual effectiveness of the alternative mitigation options which have been identified.  </p><p>The choice whether to mitigate the event intensity or the expected damage, with either structural or non-structural measures, will usually achieve a risk mitigation level, associated to a complimentary residual risk. </p><p>Therefore, the project management has to evaluate the degree of hazard and risk mitigation for any given solution. The acceptability of the residual risk and its possible mitigation through organizational measures are to be evaluated as well. A long-term cost/benefit analysis has to be performed, taking also into account the tolerability over time of the handling costs. </p><p>The first milestone in the decisional process the definition of the acceptable risk level. As a matter of fact, which is the key criterion supporting the decision to undertake cost-effective investments in mitigation works. For that reason, a preliminary analysis of the in-situ geological conditions should be as complete and detailed as possible. Project managers have to be aware that the zero-option has to be taken in to account as well, in the case the risk level would not be acceptable. </p><p>Moreover, it has to be taken into account that the risk evaluation is always site-specific, because the rockfall mitigation projects have to be based on a detailed geological reference model. Local changes in geological, hydrogeological, morphological and structural conditions, vegetation, vulnerability and exposure of the objects at risk may lead to different hazard and risk conditions even at a local scale. Therefore, a risk assessment analysis is consistent to a single project and can’t be directly upscaled to implement, for instance, a municipal land management plan.   </p><p>Another key point in the decision-making process is the expected damage assessment, which has to include not only the direct damages (e.g.: loss of human lives) but also the indirect damages and their economic and social impacts. As a consequence, in assessing the acceptable risk both the probability of direct and indirect damage and the economic and social benefits derived from its acceptance have to be weighted. </p><p>The final result has led to guidelines based on QRA (Quantitative Risk Assessment) method and defining three risk levels: Acceptable, ALARP (As Low As Reasonably Practicable) and Unacceptable, providing to the project managers a rational and objective framework to manage rockfall hazards in Italy. </p>


2012 ◽  
Vol 12 (11) ◽  
pp. 3571-3587 ◽  
Author(s):  
B. Mazzorana ◽  
L. Levaggi ◽  
M. Keiler ◽  
S. Fuchs

Abstract. As a consequence of flood impacts, communities inhabiting mountain areas are increasingly affected by considerable damage to infrastructure and property. The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for a sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. Given these premises, firstly, a comprehensive method to derive flood hazard process scenarios for well-defined areas at risk is presented. Secondly, conceptualisations of a static and dynamic flood risk assessment are provided. These are based on formal schemes to compute the risk mitigation performance of devised mitigation strategies within the framework of economic cost-benefit analysis. In this context, techniques suitable to quantify the expected losses induced by the identified flood impacts are provided.


2021 ◽  
Vol 13 (10) ◽  
pp. 5697
Author(s):  
Stefano Salata ◽  
Silvia Ronchi ◽  
Carolina Giaimo ◽  
Andrea Arcidiacono ◽  
Giulio Gabriele Pantaloni

Climate change impacts urban areas with greater frequency and exposes continental cities located on floodplains to extreme cloudbursts events. This scenario requires developing specific flooding vulnerability mitigation strategies that improve local knowledge of flood-prone areas at the urban scale and supersede the traditional hazard approach based on the classification of riverine buffers. Moreover, decision-makers need to adopt performance-based strategies for contrasting climate changes and increasing the resilience of the system. This research develops the recent Flooding Risk Mitigation model of InVEST (Integrated Evaluation of Ecosystem Services and Trade-off), where cloudburst vulnerability results from the soil’s hydrological conductivity. It is based on the assumption that during cloudburst events, all saturated soils have the potential for flooding, regardless of the distance to rivers or channels, causing damage and, in the worst cases, victims. The model’s output gives the run-off retention index evaluated in the catchment area of Turin (Italy) and its neighborhoods. We evaluated the outcome to gain specific insight into potential land use adaptation strategies. The index is the first experimental biophysical assessment developed in this area, and it could prove useful in the revision process of the general town plan underway.


2021 ◽  
Vol 8 (1) ◽  
pp. 201566
Author(s):  
R. S. J. Sparks ◽  
W. P. Aspinall ◽  
E. Brooks-Pollock ◽  
R. M. Cooke ◽  
L. Danon ◽  
...  

Personal contacts drive COVID-19 infections. After being closed (23 March 2020) UK primary schools partially re-opened on 1 June 2020 with social distancing and new risk mitigation strategies. We conducted a structured expert elicitation of teachers to quantify primary school contact patterns and how contact rates changed upon re-opening with risk mitigation measures in place. These rates, with uncertainties, were determined using a performance-based algorithm. We report mean number of contacts per day for four cohorts within schools, with associated 90% confidence ranges. Prior to lockdown, younger children (Reception and Year 1) made 15 contacts per day [range 8.35] within school, older children (Year 6) 18 contacts [range 5.55], teaching staff 25 contacts [range 4.55] and non-classroom staff 11 contacts [range 2.27]. After re-opening, the mean number of contacts was reduced by 53% for young children, 62% for older children, 60% for classroom staff and 64% for other staff. Contacts between teaching and non-teaching staff reduced by 80%. The distributions of contacts per person are asymmetric with heavy tail reflecting a few individuals with high contact numbers. Questions on risk mitigation and supplementary structured interviews elucidated how new measures reduced daily contacts in-school and contribute to infection risk reduction.


Sign in / Sign up

Export Citation Format

Share Document