scholarly journals Characteristics of building fragility curves for seismic and non-seismic tsunamis: case studies of the 2018 Sunda Strait, 2018 Sulawesi-Palu and 2004 Indian Ocean tsunamis

2020 ◽  
Author(s):  
Elisa Lahcene ◽  
Ioanna Ioannou ◽  
Anawat Suppasri ◽  
Kwanchai Pakoksung ◽  
Ryan Paulik ◽  
...  

Abstract. Indonesia has experienced several recent tsunamis triggered by seismic as well as non-seismic (i.e., landslides) sources. These events damaged or destroyed coastal buildings and infrastructure, and caused considerable loss of life. The impact of tsunami characteristics on structural components can be represented by fragility curves. These cumulative distribution functions express the likelihood of a structure reaching or exceeding a damage state in response to a tsunami hazard intensity measure. Using numerical simulations and post-tsunami observations, we successfully reproduce the hydrodynamic features of the 2018 Sunda Strait and 2018 Sulawesi-Palu tsunamis for the first time. We then compare non-seismic building fragility curves from these events with the ones of the 2004 Indian Ocean tsunami (IOT) to provide a novel understanding of wave period, ground shaking and liquefaction impacts on the structural performance of buildings. Below 5-m flow depth, the 2004 IOT in Khao Lak/Phuket (Thailand), characterized by long wave period due to its seismic source, induces larger damage to buildings than the 2018 Sunda Strait tsunami, triggered by a landslide. We also note that for 4-m flow depth, the building damage probability is almost twice less in Khao Lak/Phuket than in Banda Aceh, where ground motion has been reported before the tsunami arrival. In addition, liquefaction events can cause significant building damage as in Palu, where constructions have been considerably affected by this phenomenon due to the 2018 Sulawesi earthquake. Below 2-m flow depth, the damage probability is greater in Palu than in the Sunda Strait but also in Banda Aceh, although this city has been affected by ground shaking, and then struck by the longer wave period of the IOT.

2021 ◽  
Vol 21 (8) ◽  
pp. 2313-2344
Author(s):  
Elisa Lahcene ◽  
Ioanna Ioannou ◽  
Anawat Suppasri ◽  
Kwanchai Pakoksung ◽  
Ryan Paulik ◽  
...  

Abstract. Indonesia has experienced several tsunamis triggered by seismic and non-seismic (i.e., landslides) sources. These events damaged or destroyed coastal buildings and infrastructure and caused considerable loss of life. Based on the Global Earthquake Model (GEM) guidelines, this study assesses the empirical tsunami fragility to the buildings inventory of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean (Khao Lak–Phuket, Thailand) tsunamis. Fragility curves represent the impact of tsunami characteristics on structural components and express the likelihood of a structure reaching or exceeding a damage state in response to a tsunami intensity measure. The Sunda Strait and Sulawesi–Palu tsunamis are uncommon events still poorly understood compared to the Indian Ocean tsunami (IOT), and their post-tsunami databases include only flow depth values. Using the TUNAMI two-layer model, we thus reproduce the flow depth, the flow velocity, and the hydrodynamic force of these two tsunamis for the first time. The flow depth is found to be the best descriptor of tsunami damage for both events. Accordingly, the building fragility curves for complete damage reveal that (i) in Khao Lak–Phuket, the buildings affected by the IOT sustained more damage than the Sunda Strait tsunami, characterized by shorter wave periods, and (ii) the buildings performed better in Khao Lak–Phuket than in Banda Aceh (Indonesia). Although the IOT affected both locations, ground motions were recorded in the city of Banda Aceh, and buildings could have been seismically damaged prior to the tsunami's arrival, and (iii) the buildings of Palu City exposed to the Sulawesi–Palu tsunami were more susceptible to complete damage than the ones affected by the IOT, in Banda Aceh, between 0 and 2 m flow depth. Similar to the Banda Aceh case, the Sulawesi–Palu tsunami load may not be the only cause of structural destruction. The buildings' susceptibility to tsunami damage in the waterfront of Palu City could have been enhanced by liquefaction events triggered by the 2018 Sulawesi earthquake.


2020 ◽  
Vol 8 (5) ◽  
pp. 4533-4538

Earthquakes are the natural disaster occurring since years but during the last two decades they are causing huge looses whether it may economic or to life. This paper focuses to evaluate the seismic performance of various building confirming to Indian standard criteria for earthquake resistant design of structures and ductile detailing of reinforced concrete structures subjected to seismic Forces-code of practice, Bureau of Indian Standards, both as per the revised codes in the year 2016. Due to ground shaking, seismic loads are the governing load and thus it becomes necessary to assess the conditional probability of structural response. Use of HAZUS methodology is followed to construct seismic fragility curves as it is well-organized and defined approach. Spectral displacement plays the functional parameter to derive the expected damage for fragility. This work represented here is compiled by means of procedure for establishing the fragility curves for three typical Reinforced Concrete (RC) frame structures having variations resembling 3 storey intended for short-period structures, 6 storey used for medium-period structures and 12 storey representing long-period structures using SAP2000 as a software tool for analyzing the structure. Furthermore an attempt is made for focus on the variation of one of the major structural configuration i.e. slab thickness which is not certainly paid attention as compared to columns and beams. Slabs adds additional stiffness to the structure which can enlighten how it behaviour would be when subjected to ground excitation. As a result, the fragility curves are plotted to study the impact due to slab thickness in order they are carefully selected while design.


Author(s):  
Hideki Kaida ◽  
Naoto Kihara

In the safe design and risk assessment of structures in coastal area, it is important to consider tsunami-borne debris impact. Recently, probabilistic analysis has become the preferred form of analysis because of the large aleatory and epistemic uncertainties associated with tsunami effects, which are not captured in deterministic scenario-based assessments. By performing both a probabilistic tsunami hazard assessment (PTHA) and a tsunami fragility assessment (TFA) on structures, their annual failure frequency can be determined. The TFA involves evaluation of the response (e.g. debris impact force exerted on the structure) and the capacity of the structure to resist tsunami effects. Then, a fragility curve shows conditional damage probability of the structure for the tsunami magnitude (e.g., discrete tsunami height around the focused area). This study proposes a TFA methodology for tsunami-borne debris impact, as this has not yet been sufficiently established. Evaluation of the impact speed and impact probability of debris considering various uncertainties in the response evaluation are described in particular detail. Moreover, an assessment of a coastal industrial site was performed and fragility curves and the annual failure frequency of structures against debris impact were shown.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/es-ny8eIUfc


2015 ◽  
Vol 31 (2) ◽  
pp. 841-868 ◽  
Author(s):  
Anawat Suppasri ◽  
Ingrid Charvet ◽  
Kentaro Imai ◽  
Fumihiko Imamura

The 63,605 damaged buildings from the 2011 Tohoku-oki tsunami in Ishinomaki were used to develop 52 fragility curves using linear regression. The data comprise the damage level and the measured inundation depth for each building. In agreement with previous studies, the present results indicate that reinforced concrete and steel buildings with three stories or more perform better under tsunami loading. Performance with respect to their intended function was found to depend mainly on structural material. Moreover, based on Japan's design code for earthquake-resistant buildings, buildings constructed after 1981 do not display a better performance compared to more recent constructions. Finally, the results show that for the same inundation depth, a higher damage probability exists along a ria coast due to higher flow velocities, confirmed by numerical simulation and survivor videos. These new findings are useful for building damage assessment, town reconstruction, and comparison of vulnerability functions in future studies.


2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Wisyanto Wisyanto

Tsunami which was generated by the 2004 Aceh eartquake has beenhaunting our life. The building damage due to the tsunami could be seenthroughout Meulaboh Coastal Area. Appearing of the physical loss wasclose to our fault. It was caused by the use dan plan of the land withoutconsidering a tsunami disaster threat. Learning from that event, we haveconducted a research on the pattern of damage that caused by the 2004tsunami. Based on the analysis of tsunami hazard intensity and thepattern of building damage, it has been made a landuse planning whichbased on tsunami mitigation for Meulaboh. Tsunami mitigation-based ofMeulaboh landuse planning was made by intergrating some aspects, suchas tsunami protection using pandanus greenbelt, embankment along withhigh plants and also arranging the direction of roads and setting of building forming a rhombus-shaped. The rhombus-shaped of setting of the road and building would reduce the impact of tsunamic wave. It is expected that these all comprehensive landuse planning will minimize potential losses in the future .


2015 ◽  
Vol 15 (11) ◽  
pp. 2557-2568 ◽  
Author(s):  
M. Wronna ◽  
R. Omira ◽  
M. A. Baptista

Abstract. In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.


2021 ◽  
Vol 10 (4) ◽  
pp. 214
Author(s):  
Lihua Yuan ◽  
Xiaoqiang Chen ◽  
Changqing Song ◽  
Danping Cao ◽  
Hong Yi

The Indian Ocean Region (IOR) has become one of the main economic forces globally, and countries within the IOR have attempted to promote their intra-regional trade. This study investigates the spatiotemporal evolution of the community structures of the intra-regional trade and the impact of determinant factors on the formation of trade community structures of the IOR from 1996 to 2017 using the methods of social network analysis. Trade communities are groups of countries with measurably denser intra-trade ties but with extra-trade ties that are measurably sparser among different communities. The results show that the extent of trade integration and the trade community structures of the IOR changed from strengthening between 1996 and 2014 to weakening between 2015 and 2017. The largest explanatory power of the formation of the IOR trade community structures was the IOR countries’ economic size, indicating that market remained the strongest driver. The second-largest explanatory power was geographical proximity, suggesting that countries within the IOR engaged in intra-regional trade still tended to select geographically proximate trading partners. The third- and the fourth-largest were common civilization and regional organizational memberships, respectively. This indicates that sharing a common civilization and constructing intra-regional institutional arrangements (especially open trade policies) helped the countries within the IOR strengthen their trade communities.


2021 ◽  
Vol 13 (5) ◽  
pp. 905
Author(s):  
Chuyi Wu ◽  
Feng Zhang ◽  
Junshi Xia ◽  
Yichen Xu ◽  
Guoqing Li ◽  
...  

The building damage status is vital to plan rescue and reconstruction after a disaster and is also hard to detect and judge its level. Most existing studies focus on binary classification, and the attention of the model is distracted. In this study, we proposed a Siamese neural network that can localize and classify damaged buildings at one time. The main parts of this network are a variety of attention U-Nets using different backbones. The attention mechanism enables the network to pay more attention to the effective features and channels, so as to reduce the impact of useless features. We train them using the xBD dataset, which is a large-scale dataset for the advancement of building damage assessment, and compare their result balanced F (F1) scores. The score demonstrates that the performance of SEresNeXt with an attention mechanism gives the best performance, with the F1 score reaching 0.787. To improve the accuracy, we fused the results and got the best overall F1 score of 0.792. To verify the transferability and robustness of the model, we selected the dataset on the Maxar Open Data Program of two recent disasters to investigate the performance. By visual comparison, the results show that our model is robust and transferable.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Jonson Lumban-Gaol ◽  
Eko Siswanto ◽  
Kedarnath Mahapatra ◽  
Nyoman Metta Nyanakumara Natih ◽  
I Wayan Nurjaya ◽  
...  

Although researchers have investigated the impact of Indian Ocean Dipole (IOD) phases on human lives, only a few have examined such impacts on fisheries. In this study, we analyzed the influence of negative (positive) IOD phases on chlorophyll a (Chl-a) concentrations as an indicator of phytoplankton biomass and small pelagic fish production in the eastern Indian Ocean (EIO) off Java. We also conducted field surveys in the EIO off Palabuhanratu Bay at the peak (October) and the end (December) of the 2019 positive IOD phase. Our findings show that the Chl-a concentration had a strong and robust association with the 2016 (2019) negative (positive) IOD phases. The negative (positive) anomalous Chl-a concentration in the EIO off Java associated with the negative (positive) IOD phase induced strong downwelling (upwelling), leading to the preponderant decrease (increase) in small pelagic fish production in the EIO off Java.


Sign in / Sign up

Export Citation Format

Share Document