scholarly journals Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

2007 ◽  
Vol 7 (5) ◽  
pp. 599-606 ◽  
Author(s):  
Y. Kawada ◽  
H. Nagahama ◽  
N. Nakamura

Abstract. We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.


2007 ◽  
Vol 14 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Y. Kawada ◽  
H. Nagahama ◽  
Y. Omori ◽  
Y. Yasuoka ◽  
T. Ishikawa ◽  
...  

Abstract. Prior to large earthquakes (e.g. 1995 Kobe earthquake, Japan), an increase in the atmospheric radon concentration is observed, and this increase in the rate follows a power-law of the time-to-earthquake (time-to-failure). This phenomenon corresponds to the increase in the radon migration in crust and the exhalation into atmosphere. An irreversible thermodynamic model including time-scale invariance clarifies that the increases in the pressure of the advecting radon and permeability (hydraulic conductivity) in the crustal rocks are caused by the temporal changes in the power-law of the crustal strain (or cumulative Benioff strain), which is associated with damage evolution such as microcracking or changing porosity. As the result, the radon flux and the atmospheric radon concentration can show a temporal power-law increase. The concentration of atmospheric radon can be used as a proxy for the seismic precursory processes associated with crustal dynamics.



2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.



2011 ◽  
Vol 488-489 ◽  
pp. 464-467
Author(s):  
Ji Ze Mao ◽  
Zhi Yuan Zhang ◽  
Zong Min Liu ◽  
Chao Sun

With the development of damage mechanics, many researchers have used it to analyze the constitutive equation of concrete. Since the special environment in the cold marine regions, the offshore structures are common to subject to the comprehensive effects of freeze-thaw action and chloride erosion. This might cause concrete materials degradation and reduce the mechanical performance of concrete seriously. In this paper, based on the analysis and mechanical experiments of concrete materials under the comprehensive effects of freeze-thaw action and chloride ion erosion, the damage evolution equation of concrete elastic modulus along with the freeze-thaw cycles and chloride ion contents was established. The effects of chloride ion were investigated during the process of concrete degradation. According to the damage evolution equation, a new constitutive equation of concrete under freeze-thaw action and chloride erosion was established. And then, by means of the element simulation analysis of concrete beams when subjected to the comprehensive actions, the feasibility and applicability of the equation was examined and discussed. In this equation, both the freeze-thaw action and chloride ion erosion were considered together. It will be more suitable for analyzing the durability of concrete structures in the real cold marine regions. It will also provide some references for concrete constitutive theory.



Author(s):  
Zhengfang Qian

This paper presents a damage mechanics-based methodology for the progressive damage and virtual qualification of advanced electronic packages such as BGAs, DCAs, CSPs, and Flip-chips. The key technique is to implement the material nonlinearity into commercially available software tools. A unified viscoplastic constitutive framework with the damage evolution and failure criteria has been successfully implemented into the ABAQUS® code to model time-rate-temperature dependent material properties. The framework has been successfully applied to solder alloys, polymer films, and underfill encapsulants. The mathematical structure and numerical algorithm development of the unified constitutive framework as well as the key implementation techniques for commercial FEA codes have been summarized in this paper. Both crack initiation and propagation of a solder joint with damage evolution under mechanical cyclic loading have been demonstrated. Virtual simulations of TSOP component failure under mechanical cyclic loading and BGA package under thermal cyclic loading have also been presented.



2019 ◽  
Vol 9 (19) ◽  
pp. 4124 ◽  
Author(s):  
Xiangchun Li ◽  
Qi Zhang

In order to describe resistivity variation regularities during the process of damage evolution of loading coal mass more comprehensively and accurately, electrical resistivity and acoustic emission (AE) characteristics of coal mass were tested by 3532-50 LCR tester and AMSY-6 AE data acquisition system under the condition of multi-stage loading, and resistivity variation characteristics were analyzed with stress changing. The damage evolution process of coal mass was studied by the measurement of the AE parameters, and the resistivity curve was obtained in the damage conditions based on the relationship between the AE damage variable and the resistivity. The results show that resistivity and stress curves of coal mass have a good correspondence during the multi-stage loading, and the resistivity shows a trend of fluctuating downward with the increasing of stress. The resistivity increases sharply to the maximum value when the load increases to the ultimate compressive strength of specimens. AE information can reveal effectively damage evolution process of microcracks formation, expansion and fracture in coal mass under external force, and during multi-stage loading, the cumulative AE ringing counts curve of coal mass have three different types of growth trends: stable stage, sudden change stage, gradual increasing stage. Meanwhile, the relationship between resistivity and AE damage variable is established based on the formula of damage variable under uniaxial compression and combined with continuous damage mechanics, and its rationality is verified.



Author(s):  
S. Peravali ◽  
T. H. Hyde ◽  
K. A. Cliffe ◽  
S. B. Leen

Past studies from creep tests on uniaxial specimens and Bridgman notch specimens, for a P91 weld metal, showed that anisotropic behaviour (more specifically transverse isotropy) occurs in the weld metal, both in terms of creep (steady-state) strain rate behaviour and rupture times (viz. damage evolution). This paper describes the development of a finite element (FE) continuum damage mechanics methodology to deal with anisotropic creep and anisotropic damage for weld metal. The method employs a second order damage tensor following the work of Murakami and Ohno [1] along with a novel rupture stress approach to define the evolution of this tensor, taking advantage of the transverse isotropic nature of the weld metal, to achieve a reduction in the number of material constants required from test data (and hence tests) to define the damage evolution. Hill’s anisotropy potential theory is employed to model the secondary creep. The theoretical model is implemented in a material behaviour subroutine within the general-purpose, non-linear FE code ABAQUS [2]. The validation of the implementation against established isotropic continuum damage mechanics solutions for the isotropic case is described. A procedure for calibrating the multiaxial damage constants from notched bar test data is described for multiaxial implementations. Also described is a study on the effect of uniaxial specimen orientation on anisotropic damage evolution.



2020 ◽  
Vol 29 (8) ◽  
pp. 1271-1305
Author(s):  
A Ustrzycka ◽  
B Skoczeń ◽  
M Nowak ◽  
Ł Kurpaska ◽  
E Wyszkowska ◽  
...  

The paper presents experimental and numerical characterization of damage evolution for ion-irradiated materials subjected to plastic deformation during nano-indentation. Ion irradiation technique belongs to the methods where creation of radiation-induced defects is controlled with a high accuracy (including both, concentration and depth distribution control), and allows to obtain materials having a wide range of damage level, usually expressed in terms of displacements per atom (dpa) scale. Ion affected layers are usually thin, typically less than 1 micrometer thick. Such a low thickness requires to use nano-indentation technique to measure the mechanical properties of the irradiated layers. The He or Ar ion penetration depth reaches approximately 150 nm, which is sufficient to perform several loading-partial-unloading cycles at increasing forces. Damage evolution is reflected by the force-displacement diagram, that is backed by the stress–strain relation including damage. In this work the following approach is applied: dpa is obtained from physics (irradiation mechanisms), afterwards, the radiation-induced damage is defined in the framework of continuum damage mechanics to solve the problem of further evolution of damage fields under mechanical loads. The nature of radiation-induced damage is close to porosity because of formation of clusters of vacancies. The new mathematical relation between radiation damage (dpa) and porosity parameter is proposed. Deformation process experienced by the ion irradiated materials during the nano-indentation test is then numerically simulated by using extended Gurson–Tvergaard–Needleman (GTN) model, that accounts for the damage effects. The corresponding numerical results are validated by means of the experimental measurements. It turns out, that the GTN model quite successfully reflects closure of voids, and increase of material density during the nano-indentation.



Author(s):  
Yi Zhang ◽  
P-Y Ben Jar ◽  
Shifeng Xue ◽  
Lin Li

A phenomenon-based hybrid approach of experimental testing and finite element simulations is used to describe the fracture behavior of pipe-grade polyethylene. The experimental testing adopts a modified D-split test method to stretch the pipe ring (notched pipe ring) specimens that have symmetric, double-edged flat notches along the pipe direction. Two series of experimental testing were conducted: (1) monotonic loading till fracture and (2) monotonic loading to a predefined strain level, keeping constant displacement for a period of time, and then unloaded. Crosshead speeds of 0.01, 1, and 100 mm/min were used in both series of tests. Likewise, two series of finite element simulation were conducted to establish the constitutive equations, either with or without considering damage evolution during the deformation process. The constitutive equation without the consideration of damage was established using results from the first series of experimental testing, and that with damage was inspired from the second series which showed the decrease in unloading modulus with the increase of crosshead speed or the predefined strain level. The results show that with the consideration of damage evolution, the constitutive equations enable the finite element simulation to determine the whole stress–strain relationship during both necking and fracture processes.



Sign in / Sign up

Export Citation Format

Share Document