scholarly journals Theoretical comparison of subgrid turbulence in the atmosphere and ocean

2015 ◽  
Vol 2 (6) ◽  
pp. 1675-1704
Author(s):  
V. Kitsios ◽  
J. S. Frederiksen ◽  
M. J. Zidikheri

Abstract. Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities) from the subgrid statistics of high resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have alternative scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including: weather, seasonal and climate prediction; transport studies; and understanding natural variability and extreme events.

2016 ◽  
Vol 23 (2) ◽  
pp. 95-105 ◽  
Author(s):  
Vassili Kitsios ◽  
Jorgen S. Frederiksen ◽  
Meelis J. Zidikheri

Abstract. Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long-standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities) from the subgrid statistics of high-resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy-cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have different scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including weather, seasonal, and climate prediction; transport studies; and understanding natural variability and extreme events.


2021 ◽  
Author(s):  
Saloua Peatier ◽  
Benjamin Sanderson ◽  
Laurent Terray

<p>The global surface temperature response to CO2 doubling (Equilibrium Climate Sensitivity or ECS) is a key uncertain parameter determining the extent of future climate change. Sherwood et al. (2020) estimated the ECS to be within [2.6K - 4.5K], but in the Coupled Model Intercomparison Project phase 6 (CMIP6), 1/3 of the General Circulation Models (GCMs) show ECS exceeding 4.5K (Zelinka et al., 2020). CNRM-CM6-1 is one of these models, with an ECS of 4.9K. In this paper, we sampled 30 atmospheric parameters of CNRM-CM6-1 and produced a Perturbed Physics Ensemble (PPE) of atmospheric-only simulations to explore the feedback parameters diversity and the climatological plausibility of the members. This PPE showed a comparable  range of feedback parameters to the multi-model archive, from 0.8 W.m-2/K to 1.8 W.m-2/K. Emulators of climatological performance and feedback parameters were used together with  observational datasets to search for optimal model configurations conditional on different net climate feedbacks. The climatological constraints considered here did not themselves rule out the higher end ECS values of 5K and above. An optimal subset of parameter configurations were chosen to sample the range of ECS allowing the assessment of feedback constraints in future fully coupled experiments.</p><p> </p><p><strong>References :</strong></p><p>Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., ... & Zelinka, M. D. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4), e2019RG000678.</p><p>Zelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P. M., Ceppi, P., ... & Taylor, K. E. (2020). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47(1), e2019GL085782.</p><p><br><br></p>


2020 ◽  
Author(s):  
David R. Thompson ◽  
Brian H. Kahn ◽  
Philip G. Brodrick ◽  
Matthew D. Lebsock ◽  
Mark Richardson ◽  
...  

Abstract. Understanding the subgrid spatial variability of water vapor is important for parameterizing and simulating cloud processes in General Circulation Models (GCMs). This study maps sub-kilometer spatial structures in total atmospheric column water vapor with Visible to Shortwave Infrared (VSWIR) imaging spectroscopy. We describe our inversion approach and validate its accuracy with coincident measurements by airborne imaging spectrometers and the AERONET ground-based observation network. Next, data from NASA’s AVIRIS-NG spectrometer enables the highest resolution measurement to date of water vapor’s spatial variability and scaling properties. We find second order structure function scaling exponents consistent with prior studies of convective atmospheres. Finally, we conclude by discussing the implications of these measurements and paths toward future campaigns to build upon these results.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1509
Author(s):  
Mengru Zhang ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Ming Pan ◽  
Shanhu Jiang ◽  
...  

In the context of global climate change, it is important to monitor abnormal changes in extreme precipitation events that lead to frequent floods. This research used precipitation indices to describe variations in extreme precipitation and analyzed the characteristics of extreme precipitation in four climatic (arid, semi-arid, semi-humid and humid) regions across China. The equidistant cumulative distribution function (EDCDF) method was used to downscale and bias-correct daily precipitation in eight Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs). From 1961 to 2005, the humid region had stronger and longer extreme precipitation compared with the other regions. In the future, the projected extreme precipitation is mainly concentrated in summer, and there will be large areas with substantial changes in maximum consecutive 5-day precipitation (Rx5) and precipitation intensity (SDII). The greatest differences between two scenarios (RCP4.5 and RCP8.5) are in semi-arid and semi-humid areas for summer precipitation anomalies. However, the area of the four regions with an increasing trend of extreme precipitation is larger under the RCP8.5 scenario than that under the RCP4.5 scenario. The increasing trend of extreme precipitation in the future is relatively pronounced, especially in humid areas, implying a potential heightened flood risk in these areas.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Nuraddeen Mukhtar Nasidi ◽  
Aimrun. Wayayok ◽  
Ahmad Fikri Abdullah ◽  
Muhamad Saufi Mohd Kassim

AbstractPrecipitation is sensitive to increasing greenhouse gas emission which has a significant impact on environmental sustainability. Rapid change of climate variables is often result into large variation in rainfall characteristics which trigger other forms of hazards such as floods, erosion, and landslides. This study employed multi-model ensembled general circulation models (GCMs) approach to project precipitation into 2050s and 2080s periods under four RCPs emission scenarios. Spatial analysis was performed in ArcGIS10.5 environment using Inverse Distance Weighted (IDW) interpolation and Arc-Hydro extension. The model validation indicated by coefficient of determination, Nash–Sutcliffe efficiency, percent bias, root mean square error, standard error, and mean absolute error are 0.73, 0.27, 20.95, 1.25, 0.37 and 0.15, respectively. The results revealed that the Cameron Highlands will experience higher mean daily precipitations between 5.4 mm in 2050s and 9.6 mm in 2080s under RCP8.5 scenario, respectively. Analysis of precipitation concentration index (PCI) revealed that 75% of the watershed has PCI greater than 20 units which indicates substantial variability of the precipitation. Similarly, there is varied spatial distribution patterns of projected precipitation over the study watershed with the largest annual values ranged between 2900 and 3000 mm, covering 71% of the total area in 2080s under RCP8.5 scenario. Owing to this variability in rainfall magnitudes, appropriate measures for environmental protection are essential and to be strategized to address more vulnerable areas.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4468
Author(s):  
Yalalt Nyamgerel ◽  
Yeongcheol Han ◽  
Minji Kim ◽  
Dongchan Koh ◽  
Jeonghoon Lee

The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.


Sign in / Sign up

Export Citation Format

Share Document