scholarly journals Spatial variability in heavy metal concentration in urban pavement joints – a case study

SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 15-31
Author(s):  
Collin J. Weber ◽  
Alexander Santowski ◽  
Peter Chifflard

Abstract. Heavy metals are known to be among one of the major environmental pollutants, especially in urban areas, and, as generally known, can pose environmental risks and direct risks to humans. This study deals with the spatial distribution of heavy metals in different pavement joints in the inner city area of Marburg (Hesse, Germany). Pavement joints, defined as the joint between paving stones and filled with different materials, have so far hardly been considered as anthropogenic materials and potential pollution sources in urban areas. Nevertheless, they have an important role as possible sites of infiltration for surface run-off accumulation areas and are therefore a key feature of urban water regimes. In order to investigate the spatial variability in heavy metals in pavement joints, a geospatial sampling approach was carried out on six inner city sampling sites, followed by heavy metal analyses via inductively coupled plasma–mass spectrometry (ICP–MS) and additional pH and organic matter analyses. A first risk assessment of heavy metal pollution from pavement joints was performed. Pavement joints examined consist mainly of basaltic gravel, sands, organic material and anthropogenic artefacts (e.g. glass and plastics), with an average joint size of 0.89 cm and a vertical depth of 2–10 cm. In general, the pavement joint material shows high organic matter loads (average 11.0 % by mass) and neutral to alkaline pH values. Besides high Al and Fe content, the heavy metals Cr, Ni, Cd and Pb are mainly responsible for the contamination of pavement joints. The identified spatial pattern of maximum heavy metal loads in pavement joints could not be attributed solely to traffic emissions, as commonly reported for urban areas. Higher concentrations were detected at run-off accumulation areas (e.g. drainage gutters) and at the lowest sampling points with high drainage accumulation tendencies. Additional Spearman correlation analyses show a clear positive correlation between the run-off accumulation value and calculated exposure factor (ExF; Spearman correlation coefficients (rSP) – 0.80; p<0.00). Further correlation analyses revealed different accumulation and mobility tendencies of heavy metals in pavement joints. Based on sorption processes with humic substances and an overall alkaline pH milieu, especially Cu, Cd and Pb showed a low potential mobility and strong adsorption tendency, which could lead to an accumulation and fixation of heavy metals in pavement joints. The presence of heavy metals in pavement joints poses a direct risk for urban environments and may also affect environments out of urban areas if drainage transports accumulated heavy metals. Finally, we encourage further research to give more attention to this special field of urban anthropogenic materials and potential risks for urban environments. Overall urban geochemical background values, and the consideration of run-off-related transport processes on pavements, are needed to develop effective management strategies of urban pavement soil pollution.

2020 ◽  
Author(s):  
Collin J. Weber ◽  
Alexander Santowski ◽  
Peter Chifflard

Abstract. Heavy metals are known to be among the one of the major environmental pollutants especially in urban areas and, as is generally known, can pose environmental risks as well as direct risks to humans. This study deals with the spatial distribution of heavy metals in different pavement joints in the inner-city area of Marburg (Hesse, Germany). Pavement joints, defined as the joint between paving stones and filled with different materials, have so far hardly been considered as anthropogenic urban soils. Nevertheless, they have an important role as possible sites of infiltration for surface runoff accumulation areas, and are therefore a key feature of urban water regimes. In order to investigate the spatial variability of heavy metals in pavement joints, a geospatial sampling approach was carried out on six inner-city sampling sites, followed by heavy metals analyses via ICP-MS, and additional pH and organic matter analyses. To obtain a risk assessment of heavy metal pollution, different pollution indices were calculated based on regional geochemical background values. Pavement joints examined consist mainly of basaltic gravel, sands, organic material and anthropogenic artefacts (e.g., glass, plastics) with an average joint size of 0.89 cm and a vertical depth of 2–10 cm. In general, the pavement joint material shows high organic matter loads (average 11.0 % by mass) and neutral to alkaline pH values. Besides high Al and Fe content, the heavy metals Cr, Ni, Cd and Pb are mainly responsible for the contamination of pavement joints. From the Geo-accumulation Index, the pollution in pavement joints regarding those metals, can be considered as moderate to high. Deterioration of soil quality was reported according to the Pollution Load Index (PLI) for 82.8 % of all sampling points, as well as a very strong potential Ecological Risk (RI) for 27.6 % of the points. The identified spatial pattern of maximum heavy metal loads in pavement joints, could not be attributed solely to traffic emissions, as commonly reported for urban areas. Higher concentrations were detected at runoff accumulation areas (e.g., drainage gutters), and at the lowest sampling points with high drainage accumulation tendencies. Additional Spearman correlation analyses show clear positive correlation between runoff accumulation value and PLI or RI index (rsp = 0.83; p 


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

&lt;p&gt;The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita&lt;sup&gt;&amp;#174;&lt;/sup&gt; and Filtralite&lt;sup&gt;&amp;#174;&lt;/sup&gt;, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.&lt;/p&gt;


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18421-18427 ◽  
Author(s):  
Haiming Wu ◽  
Li Lin ◽  
Guangzhu Shen ◽  
Ming Li

The risk of heavy metals to aquatic ecosystems was paid much attention in recent years, however, the knowledge on effects of heavy metals on dissolved organic matter (DOM) released byMicrocystiswas quite poor, especially in eutrophic lakes.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 193-199 ◽  
Author(s):  
K. C. Yu ◽  
C. Y. Chang ◽  
L. J. Tsai ◽  
S. T. Ho

This study depicts the amounts of heavy metals (Cu, Zn, Pb, Cr, Co, and Ni) bound to four geochemical compositions of sediments (carbonates, Mn oxides, Fe oxides, and organic matters), and the correlations between various geochemical compositions and their heavy-metal complexes. Hundreds of data, obtained from sediments of five main rivers (located in southern Taiwan), were analyzed by using multivariate analysis method. Among the four different geochemical compositions, the total amount of the six heavy metals bound to organic matter is the highest. Zn is easily bound to various geochemical compositions, especially carbonates in sediments of the Yenshui river and the Potzu river (i.e., the heavily heavy-metal polluted sediments); Cr, Pb, and Ni are mainly bound to both Fe oxides and organic matter; Cu has high affinity to organic matter. By performing principal component analyses, the data points of organic matter and both Pb and Cu associated with organic matter cluster together in sediments ofthe Peikang, the Potzu, and the Yenshui rivers, which indicates both Pb and Cu might be discharged from the same pollution sources in these rivers. Moreover, correlations between any two binding fractions of heavy metal associated with Fe oxides in different rivers are not consistent, which indicates some factors including the binding sites of Fe oxides, the extent of heavy metal pollution, binding competitions between heavy metals may affect the amounts of heavy metals bound to Fe oxides. Furthermore, it should be noted that the amount of Pb bound to Fe oxides is highly correlated with the amount of Fe oxides in sediments of the Peikang, the Potzu, and the Yenshui rivers.


1994 ◽  
Vol 29 (3) ◽  
pp. 241-248 ◽  
Author(s):  
A. Rosso ◽  
M. Lafont ◽  
A. Exinger

The aim of this research is to describe the impact of heavy metals contaminating sediments on oligochaete communities. Sediments were collected three times (June, August, October 1991) for chemical and biological analyses in 15 sites situated in the river I11 and its tributaries (Rhine Basin, France). The sediments are characterized by high contents of heavy metals, mainly Hg, Cu, Cr, Pb, Zn from below the city of Mulhouse. The majority of sediments are heavily loaded with organic matter and organic micropollutants are also present. Oligochaete communities are rich in species. However five species only, considered as pollution-tolerant or opportunist, are significantly present and abundant. The percentages of Tubificidae without hair setae are positively related to heavy metal contents of the sediments, and the percentages of Tubificidae with hair setae are negatively related. Several species such as N. communis, N. barbata, D. digitata and Bothrioneurum sp. are considered as tolerant to heavy metals; on the contrary L. claparedeanus, L. udekemianus, Stylodrilus sp. and S. josinae are considered as intolerant. The reproductive strategy of oligochaetes in contaminated areas and the role of organic matter are discussed. Several recommendations are given for the rehabilitation of the investigated sites.


2014 ◽  
Vol 675-677 ◽  
pp. 654-657
Author(s):  
Qiu Jun Li ◽  
Rui Jie Zhang ◽  
Ying Hui Wang ◽  
Da Rong Li

In this study we compared the efficiency of four kinds of amendments (silkworm excrement, coconut husk, red mud, sepiolite) and their mixtures to immobilize the heavy metals present in a contaminated acidic soil (Pb:420 mg ·kg−1; Zn :334 mg· kg−1) and to influence several enzymatic activities. The results showed that, silkworm excrement, coconut husk and their mixtures, which had high pH and/or high content of organic matter, reduced exchangeable Pb in the soil by 18% to 46%, and reduced available Zn by 24% to 35%, which was more efficacious than single sepiolite. The complex of silkworm excrement and red mud had a great influence on soil pH, while coconut husk increased the content of organic matter in soil significantly.


2021 ◽  
Author(s):  
Harikrishnan Sadanandan ◽  
Senthil Nathan Dharmalingam ◽  
Nitin Agarwal ◽  
Sridharan Mouttoucomarassamy ◽  
Anbuselvan Nagarajan

Abstract The study of heavy metal distribution in the shelf sediments of Southwestern part of Bay of Bengal is essential in determining the distribution pattern and to understand the consequences of marine pollution beside the coastal environment. The south eastern coastal areas of India are affected by several disturbances and contamination associated with accelerated industrialization and urbanization. Twenty-nine surface sediment samples were collected from shelf region of Southwestern part of Bay of Bengal and analyzed for sediment texture, organic matter and heavy metals. Pollution indices such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Contamination Factor (CF) as well as multivariate statistical analyses were used to recognize the pollution pattern and probable sources for metal contamination. Comparatively, the concentration of heavy metals in the study area is closely associated with finer fractions and organic matter. The results demonstrate that Cu, Co, Mn, Pb, Zn, Cr and Ni in most of the sites are extremely contaminated in terms of Igeo. The computed values of CF indicate very high contamination of the metals like Pb, Zn and Cr followed by uncontamination to moderate contamination of Cu, Mn, Ni, Co. Based on factor analysis, domestic and industrial activities from adjacent land areas are found to be the major contributors of heavy metals in the shelf sediments.


Author(s):  
Diorgu Faith ◽  
Kalaotaji Glory Biambo ◽  
Jonathan Nyebuchi ◽  
Chikadibia Fyneface Amadi ◽  
Felix Eedee Konne

Breast milk is one fluid that could contain heavy metals and this can be dangerous to the health of breastfeeding baby. The increase in urbanization and industrialization often comes with the increased level of heavy metals in the environment especially in developing countries where environmental protection is poorly managed. The study aimed to compare the heavy metal composition in breast milk in postpartum women in urban and sub-urban areas in Rivers State. The study was conducted among 59 postpartum subjects between 0 and 10days of child delivery in each group. Sampling was done through a simple randomized system. Human breast milk was collected using a manual breast pump. Heavy metals; Lead (Pb), Mercury (Hg) and Mercury (Hg) were assayed using atomic absorption spectrophotometer with their corresponding cathode lambs. Results revealed that the mean differences of the heavy metals assayed between both groups were not significant (p>0.05). This work has shown that heavy metal composition in the breast milk of postpartum women may not vary based on urban and sub-urban settlements.


2021 ◽  
Vol 13 (24) ◽  
pp. 13719
Author(s):  
Aso H. Saeed H. Salih ◽  
Abdullah A. Hama ◽  
Karzan A. M. Hawrami ◽  
Allah Ditta

Land snails are crucial consumers in the terrestrial environment and beneficial significant bioindicators to evaluate the chemical impact in the ecosystem, especially on urban lands. The present study aimed to investigate the concentration of heavy metals such as As, Cr, Ni, Pb, and Zn in urban soil and study whether Eobania vermiculata acts as a bioindicator for heavy metal contamination in an urban area. Thirty soil and snail samples in triplicate from each sampling site were taken from the urban areas of Suliamani. After a microwave-assisted digestion procedure, every sample was analyzed by inductively coupled plasma-optical emission spectrometry. Results showed that the concentration of chromium (Cr) in each snail sample was significantly high. The maximum Cr concentration (15.87 mg kg−1) was recorded in the snail sample collected from Ali Kamal Park, which was adjacent to a very crowded traffic road. The As concentration in snail samples ranged from 0.08 to 1.004 mg kg−1, and it was below the permissible limits. However, the concentrations of heavy metals in urban soil locations were below their background measurements, except for nickel (Ni) which was above the permissible limits. The safest site in the study area was Chaviland 1, while the most contaminated site was the Ha-wary Shar Park. The snails bioaccumulated metals in their tissues in the following order, Cr > Zn > Ni, and this bioaccumulation occurred more on the main road locations, which represented potentially contaminated places due to anthropogenic activities. Moreover, there was no correlation among the heavy metals within the soil samples when compared to the similar metals in the snail samples, due to the low concentration of heavy metals in soil, excluding Ni, from where the snail samples were collected. Consequently, the land snail, E. vermiculata, is an appropriate sentinel organism for some metals, mainly for Cr, and the bioindicator monitoring with this snail should be extended to mixtures of heavy metals, since such relationships frequently occur in soil.


Author(s):  
Seyed Esmael Mahdavian ◽  
RK Somashekar

Urban food security in India is a matter of growing concern. It is estimated that by 2005, 60% of India's population will be living in urban areas. The presence of heavy metals in human body always draws scientific concern as these are considered responsible for affecting health, especially in these days where the release of toxic wastes in the environment has been increased. The increasing trends in food contamination in urban areas are largely attributed to the polluted environment in urban agriculture, contaminated food transport and supply chains; poor market sanitary conditions, and the use of contaminated or waste water for irrigation purposes. The objectives of this paper to measure the levels of heavy metal contamination of fruits in Bangalore markets and assess how the heavy metal contamination might have impacted food safety standards vis a vis heavy metals on urban consumers. The results show that urban consumers are at greater risk of purchasing fresh fruits with high levels of heavy metals beyond the legally permissible limits as defined by the Indian Prevention of Food Adulteration Act, 1954. It must be noted here that these norms are less strict than international food safety norms like Codex Alimentarius or European Union standards. It is therefore suggested here that care should be taken in the following: reduce pollution at water source points; improve post harvest handling; enhance better coordination in fresh crops trading system to improve food safety standards; improve sanitary conditions for the city food markets; and increase awareness in consumers and policy makers on the dangers of heavy metal contamination in the food intake. Keywords: Heavy metals; Prevention of Food Adulteration Act; Atomic Absorption Spectrophotometer (AAS) DOI: 10.3126/kuset.v4i1.2880 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 17-27


Sign in / Sign up

Export Citation Format

Share Document