scholarly journals A multi-parameter hydrochemical characterization of proglacial runoff, Cordillera Blanca, Peru

2011 ◽  
Vol 5 (5) ◽  
pp. 2483-2521 ◽  
Author(s):  
P. Burns ◽  
B. Mark ◽  
J. McKenzie

Abstract. The Cordillera Blanca, located in the central Peruvian Andes, is the most glacierized mountain range in the tropics. The study objective is to determine the spatial and topographic controls on geochemical and isotopic parameters in the Quilcayhuanca drainage basin. During the dry season of July 2009, surface water and groundwater samples were collected from the proglacial zone of the 90 km2 Quilcayhuanca basin which is 20% glacierized. The basin water samples (n = 25) were analyzed for pH, conductivity, major cations (Ca, Mg, Na, K, Fe(II)), major anions (F, Cl, SO4), nutrients (total N, total P, and Si), and stable isotopes of water (δ18O, δ2H). The valley's surface water is acidic (pH 3–4) and is dominated by Ca2+, Mg2+, and SO42−, the last of which is likely due to pyrite oxidation. Total P and total N show no trend with elevation down valley, while Si generally increases with decreasing elevation. Groundwater samples are differentiated from surface water samples by lower pH, specific conductance, and total P and higher Na+, K+, HCO3−, Si, and δ18O. A two-component mixing model indicates that discharge from the watershed is approximately two-thirds surface water (mostly glacier melt) and one-third groundwater. The results were compared to data from the Rio Santa and indicate that this trend may persist at the regional scale.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhuan Cui ◽  
Jie Wang ◽  
Shuang Hao

AbstractNitrate (NO3−) pollution is a serious global problem, and the quantitative analysis of its sources contributions is essential for devising effective water-related environmental-protection policies. The Shengjin Lake basin, located in the middle to lower reaches of the Yangtze River in China was selected as the research area in our study. We first grouped 29 surface water samples and 33 groundwater samples using cluster analysis, and then analyzed potential nitrate sources for each dataset of δ15N–NO3− and δ18O–NO3− isotope values by applying a Bayesian isotope-mixing model. Our results show that the nitrogen pollution in the surface-ground water in the study area seriously exceeded to class V of the Environmental Quality Standard of Surface Water of China. The NO3− in surface water from the mid-upper reaches of the drainage basin mainly originates from soil nitrogen (SN) and chemical fertilizer (CF), with contribution rates of 48% and 32%, respectively, and the NO3− in downstream areas mainly originates from CF and manure and sewage (MS), with contribution rates of 48% and 33%, respectively. For the groundwater samples, NO3− mainly originates from MS, CF, and SN in the mid-upper reaches of the drainage basin and the northside of Dadukou near the Yangtze River, with contribution rates of 34%, 31%, and 29%, respectively, whereas NO3− in the lower reaches and the middle part of Dadukou mainly originates from MS, with a contribution rate of 83%. The nitrogen conversion of surface water in lakes and in the mid-upper reaches is mainly affected by water mixing, while the groundwater and surface water in the lower plains are mainly affected by denitrification. The method proposed in this study can expand the ideas for tracking nitrate pollution in areas with complex terrain, and the relevant conclusions can provide a theoretical basis for surface and groundwater pollution control in the hilly basin of Yangtze River.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1145
Author(s):  
Nguyen Vo Chau Ngan ◽  
Huynh Van Thao ◽  
Nguyen Dinh Giang Nam

Background The evaluation of nutrient variability plays a crucial role in accessing soil potentials and practical intervention responses in rice production systems. Synthetic fertilizer applications and cultivation practices are considered key factors affecting nutrient dynamics and availability. Here, we assessed the nutrient dynamics in surface, subsurface water and soil under local water management and conventional rice cultivation practices in the Vietnamese Mekong Delta. Methods We implemented a field experiment (200 m 2) in the 2018 wet season and the 2019 dry season in a triple rice-cropping field. Eight samples of surface water, subsurface water (30–45 cm), and topsoil (0–20 cm) were collected and analysed during the rice-growing seasons. Results The results showed that N-NH 4+, P-PO 43- and total P peaks were achieved after fertilizing. Irrespective of seasons, the nutrient content in surface water was always greater than that of subsurface water (P<0.001), with the exception of N-NO 3-, which was insignificant (P>0.05). When comparing the wet and dry seasons, nutrient concentrations exhibited minor differences (P>0.05). Under conventional rice cultivation, the effects of synthetic fertilizer topdressing on the total N, soil organic matter (SOM), and total P were negligible in the soil. Higher rates of N fertilizer application did not significantly increase soil N-NH 4+, total N, yet larger P fertilizer amounts substantially enhanced soil total P (P<0.001). Conclusions Under conventional rice cultivation, N-NH 4+, P-PO 43- and total P losses mainly occur through runoff rather than leaching. While N-NO 3- loss is similar in surface water and subsurface water. Notably, nutrient content in soil was high; whilst SOM was seen to be low-to-medium between seasons. Future work should consider the nutrient balance and dynamic simulation in the lowland soil of the Vietnamese Mekong Delta’s paddy fields.


2017 ◽  
Vol 37 (1) ◽  
pp. 9-24
Author(s):  
F. N. Gyawu-Asante ◽  
S. Aikins ◽  
R. B. Voegborlo

A study of the water sources from Bibiani and its environs was conducted between November, 2009 and April, 2010 to determine whether contamination (of water sources) from (these parameters) physical, chemical and trace metal in Bibiani is as a result of mining or geochemicaland biochemical processes within the environment. This was done by collecting water samples from two streams, two rivers, three boreholes (BHs) and three hand dug wells (HDWs). These were analysed in the laboratory. Levels of Arsenic (As), Iron (Fe), Manganese (Mn), pH, TotalDissolved Solids (TDS), Electrical Conductivity (EC), Temperature, Alkalinity, Hardness, Phosphate (P) and Cyanide (CN) in water sources were determined. Mining related contaminants detected in water samples were As, CN, Mn and Fe. It was observed that surface water pH values were generally higher than that of groundwater samples. As concentrations in surface water samples were higher compared to that of groundwater samples. Also, CN concentration in ground water samples was higher than that of surface water. Ground water contained higher concentration of Mn than surface water; the opposite can be said of Fe concentration in surfacewater which was higher than that of ground water. The study also observed that pH, TDS, EC, total alkalinity, total hardness , Arsenic and total cyanide levels in the HDW and BH samples showed 100% compliance with the WHO and EPA limits while Mn and Fe levels indicated traces of non – compliance. Compared to WHO / EPA guidelines, few water sources had one or moretrace metal (Fe, As and Mn) levels outside acceptable limits for drinking. However, most of the levels were safe for human consumption.Keywords: Surface, gold mining, quality, degradation, Bibiani


Author(s):  
RAGAA EL-SHEIKH ◽  
IBRAHIM HEGAZY ◽  
EHAB ZAGHLOOL ◽  
MOHAMED E. A. ALI ◽  
AYMAN A. GOUDA

Objective: The study presents simple tools for water resources quality classification based on its chemical compositions in Abu Zaabal area, eastern Nile Delta, Egypt and assess the water quality for different uses. Methods: 31 water samples were collected from different water resources in the study area and analyzed for physicochemical parameters. Hydrochemical relations, contour maps and statistical methods were used to estimate the contamination indices and evaluate the water resources for different purposes. Results: 83.3% of groundwater samples is fresh water and 16.7% are brackish water. 85.7% of surface water samples are fresh and 14.3% is saline. 92% of groundwater samples and 71.5% of surface water samples are very hard water. According to HPI values, 8% of the quaternary groundwater samples are good, 4% are poor, 4% are very poor and 84% of the samples are unsuitable. All groundwater samples and 71% of surface water samples are contaminated with respect to ammonia. Conclusion: Higher concentrations of TDS and heavy metal may be due to the clay nature of the soil, the marine sediments in the aquifer matrix together with the dissolution and leaching of minerals from agricultural, anthropogenic and industrial activities. The groundwater in the polluted zones is considered unsuitable for human drinking.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 495E-495
Author(s):  
Carolyn DeMoranville ◽  
Brian Howes ◽  
David White ◽  
Daniel Shumaker

Although cranberry production typically requires a low fertilization rate compared to many crops, bog waters are generally discharged through surface water flow directly to streams, ponds or lakes and indirectly to coastal waters. Since discharge is primarily to fresh water bodies, and since such waters are generally phosphorus-limited, P is the fertilizer element of most environmental concern in Massachusetts cranberry production. This study was designed to determine how much P enters and leaves cranberry bog systems on an annual basis, what activities contribute to nutrient releases, and what management changes can reduce P discharges. On a total budget basis, including fertilizer applications as inputs and crop and other biomass (leaves) removal as outputs, the bogs were generally net importers of total N and total P. However, total P in outgoing waters was greater than that in source water. Net TP fluvial output averaged 2.08 kg·ha–1·yr–1 in 2002 (range 0.01 to 4.15); 1.66 kg·ha–1·yr–1 in 2003 (range –0.63 to 3.62) and 1.22 kg·ha–1·yr–1 in 2004 (range –1.24 to 4.30). The primary path of nutrient discharge from the bogs was through surface water. Flooding events were the primary source of total P output from the cranberry bogs. Gross total P export from the cranberry bogs was within the range of that for other reported agricultural land uses but greater than that for forested lands. When fertilizer P input was reduced (20% to 35%) at cranberry bog sites for two consecutive seasons, crop yield was not adversely affected and P discharge was reduced compared to that in the initial (prereduction) year.


1999 ◽  
Vol 82 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Mark R Burkhardt ◽  
Paul P Soliven ◽  
Stephen L Werner ◽  
Deborah G Vaught

Abstract A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 μg/L. Mean recoveries and relative standard deviations were 93 ± 13% for organic- free water samples fortified at 0.04 μg/L and 84 ± 4% for laboratory reagent spikes fortified at 0.5 μg/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 μg/L in surface water samples and from 0.01 to 0.08 μg/L in groundwater samples.


1989 ◽  
Vol 46 (1) ◽  
pp. 41-49 ◽  
Author(s):  
T. E. Ford ◽  
Robert J. Naiman

Dissolved organic carbon (DOC) and inorganic nutrients (NH4-N, NO3-N, soluble total N, PO4-P, soluble total P, and Si) were measured in ground and surface waters in the Matamek River drainage network, Quebec, Canada. In general, concentrations of carbon and nitrogen were significantly higher in groundwater than in surface water (up to 340% for DOC and up to 700% for total N). No significant difference was detected for phosphorus whereas considerable variation occurred for silicon, with significantly higher groundwater concentrations at 50% of the study sites. We hypothesize that (1) groundwater is a source of DOC and nitrogen in these systems and (2) nutrients introduced through groundwater seepage are rapidly utilized via oxidative, biotic processes within the hyporheal zone or at the sediment–water interface.


2020 ◽  
pp. 1978-1993
Author(s):  
Sarmad Jamal Hussien ◽  
Firas Mudhafar Abdulhussein

The hydrochemical study of the surface and groundwater in Khan AL-Baghdadi  area  included interpretation of physical, chemical and biological properties of 14 wells and 6  surface water samples collected from Euphrates River.. The study covered two periods representing dry and wet periods in October 2018 and April 2019, respectively. The surface water samples were characterized as slightly alkaline, fresh water, excessively mineralized, calcium-chloride type, and hard to very hard class. While the groundwater samples were characterized as slightly alkaline, brackish water, excessively mineralized, calcium-chloride and sodium-chloride type, and hard to very hard class. The assessment of water for irrigation purposes for both water sources in the dry period showed a Sodium Adsorption Ratio (SAR) of no harmful effects, while the Soluble Sodium Percentage (Na%) demonstrated a good irrigation Water Class, except for one well with a permissible irrigation Water Class. While in the wet period, all surface and groundwater samples were of a good irrigation Water Class, except for two wells with permissible irrigation Water Class. In terms of total dissolved solids (TDS) and electrical conductivity (EC), all surface water samples for the two periods were within the permissible limits of irrigation water quality, whereas groundwater samples for the two periods showed unsuitable limits, except for three wells within the permissible limits of irrigation water quality. The microbiological tests showed that all samples  of surface and groundwater are classified as clean.


2014 ◽  
Vol 47 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Steven H. Emerman ◽  
Janae R. Nelson ◽  
J. Kade Carlson ◽  
Tracy K. Anderson ◽  
Anusha Sharma ◽  
...  

Recent studies have shown that elevated groundwater as occurs even in Kathmandu and Pokhara Valleys in Nepal, two tectonic valleys well upstream of the floodplain of the Ganges River. Moreover, studies in both valleys showed surface water As to be statistically indistinguishable from groundwater As, which led to the fluvial recharge model in which elevated groundwater As results from losing streams with elevated As, which is a consequence of rapid erosion caused by a combination of monsoon climate, tectonic uplift and deforestation. The objective of this study was to further test the fluvial recharge model in Mustang Valley, the third major tectonic valley in Nepal Himalaya far upstream from the floodplain of the Ganges River. In May 2011 water samples were collected from 33 surface water sites (24 directly from streams and 9 from canals, pipes or taps fed by streams) and 24 groundwater sites (10 directly from springs and 14 from pipes or taps fed by springs). The WHO As Standard was exceeded in 47% of surface water samples and 79% of groundwater samples, including all nine functioning water taps in Lo-Manthang, the largest village. Separating samples into a high- As Region I (geometric mean As = 0.071 mg/L) and a low-As Region II (undetectable As for 85% of samples) showed that surface water As and groundwater As were statistically indistinguishable within each region. Only Region I receives overland flow from the exposed Mustang and Mugu Granites. The correspondence between groundwater As and watershed surface lithology is further evidence for the fluvial recharge model.


2019 ◽  
Vol 60 (5) ◽  
pp. 1069-1084
Author(s):  
Mustafa Haqi Ismael ◽  
Balsam Salim Al-Tawash ◽  
Younus I. Al-Saady

The present study aims to assess the water quality and the hydrochemical characteristics and seasonal variation of surface water on the aspect of trace elements in Al-Tarmiyah District, Baghdad, Iraq. Ten water samples were collected, four from surface water and six from groundwater on October 2017, and on April 2018. All samples were analyzed for physiochemical parameters such as water temperature, pH, EC, TDS,TH,TSS, major ions (Ca2+, Mg2+, Na+, K+, SO42-, Cl-, and HCO3-), and nutrients (NO3-, and PO43-). In addition, samples were analyzed for trace elements that include Fe, Al, Pb, Zn, Mn, Cr, Cu, Co, Ni, and Cd. Suitability of water for domestic uses was evaluated depending on the criteria or standards of acceptable quality for that use.      Surface water samples of October 2017 were classified as Ca-Cl and Na-Cl water type while they were classified as Na-Cl water type in April 2018. Most groundwater of both months' samples was classified as Ca-Cl and Na-Cl water types. There is only one groundwater sample (GW2) was classified as Ca-SO4-2 water type. According to water classification based on the Piper diagram, most of surface and groundwater samples for both months falling in class (e), this means that the type of water is "Earth alkaline water with increased portions of alkalis with prevailing sulfate or chloride". Suitability of water for drinking purpose is evaluated depending on the criteria or standards of acceptable quality for that use ( WHO and Iraqi Standard). All surface and groundwater samples from the studied area are not suitable for drinking purposes and within "excellent type” for livestock and poultry use. Additionally, almost all surface water samples were within Good class based on the suggested limits of EC value (Ayers and Westcot, 1985) for irrigation while most of the groundwater samples are within unsuitable class. All surface water and groundwater samples lie within low hazard class of the irrigation water based on SAR values.


Sign in / Sign up

Export Citation Format

Share Document