scholarly journals Therapeutic Potential of Noble Nanoparticles for Wound Repair

2014 ◽  
Vol 3 ◽  
Author(s):  
Timur Saliyev ◽  
Gulsim Kulsharova ◽  
Alma Akhmetova ◽  
Talgat Nurgozhin ◽  
Sergey Mikhalovsky

Introduction. Nanoparticles made of noble metals, such as gold and silver, have a great potential to be effectively employed for wound management. The nano-size of such particles provides an opportunity to enlarge the contacting area, which results in more effective anti-bacterial action and faster wound repair. It must be noted that the shape of noble nanoparticles might play a crucial role in the manifestation of their anti-microbial properties. The modern state of technology allows fabrication of the nanoparticles with the desired shape and physical properties. In order to provide efficacy and close contact with the wound, the noble nanoparticles can be incorporated into a special matrix made of a cryogel (based on polymethyl methacrylate). This combination might serve as a foundation for developing completely new types of wound dressing.Materials and methods. We have developed a few methods for synthesizing gold and silver nanoparticles of different shapes and sizes. After fabrication of metallic nanoparticles, they were characterized by using Tunneling Electron Microscopy (TEM) and Malvern Zetasizer system in order to determine the average population size and consistency. The silver nanoparticles was synthesized using sodium borohydride reduction of silver nitrate. The synthesis of gold nanoparticles was conducted by using the Turkevich method.Results. We have developed a synthetic cryogel based on polyacrylamide (by cryogelation reaction) at several temperatures. At the second step, we developed a method for conjugating fabricated gold and silver nanoparticles to the surface (or pores) of cryogel through covalent bonds so they can provide antibacterial action within the wound. By following the developed protocol, we were able to obtain an approximate cryogel layer (1 cm thickness) with embedded gold and silver nanoparticles. This conjugate was analyzed and confirmed using Scanning Electron Microscopy (SEM) and TEM.Discussion. The obtained results indicate the feasibility of the fabrication of a novel type of wound dressing. At the next step, we are planning to elucidate the bio-compatibility of the combination of cryogel and nanoparticles. Moreover, anti-bacterial properties of this new type of wound dressing will be analyzed. 

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4585
Author(s):  
Nicole Jara ◽  
Nataly S. Milán ◽  
Ashiqur Rahman ◽  
Lynda Mouheb ◽  
Daria C. Boffito ◽  
...  

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents’ nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 766 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Kamil Kuča ◽  
Anu Kalia ◽  
Eugenie Nepovimova ◽  
...  

Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by ‘Pushpa Ayurveda’ or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.


Nowadays, wound healing is the common and simple problems occur in our society. Wound healing is the multi factorial process which includes inflammation, reepithelialisation, collagen deposition, and angiogenesis. Wound repair system is indispensable to enhance the proper functioning of skin. Normally, wound dressing is either momentary or lasting, wound dressings has been intended to improve the wound repair. Those wound dressing are required to wrap the large surfaced open wounds such as widespread burns, pressure ulcers, foot sores etc., wound healing substance should have some important features such as, high healing efficiency, anti-scar formation, providing favourable atmosphere for wound management. The collagen plays an important role in tissue formation and has more effect on wound healing. In this work collagen sponge is prepared from fish scales and to increase the antibacterial efficacy need extract has been added.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Diego Alberto Lomelí-Rosales ◽  
Adalberto Zamudio-Ojeda ◽  
Sara Angélica Cortes-Llamas ◽  
Gilberto Velázquez-Juárez

AbstractNowadays, there are several approaches reported to accomplish the green synthesis of metal nanoparticles by using bacterial and fungi supernatants or by-products generated by these microorganisms. Therefore, agars as solely reductive regents have started to be used in order to obtain metal nanoparticles. This paper shows the results of the synthesis of gold and silver nanoparticles with different morphology, mainly triangular and truncated triangular, using Eosin Methylene Blue (EMB) agar as reducing agent. To control the reaction process, the necessary activation energy for the reducer was provided by three different techniques: microwave radiation, using a domestic microwave oven, ultraviolet radiation, and heating on a conventional plate. The evolution of the reduction process and stability of the samples was performed by ultraviolet visible spectroscopy. Morphology was carefully analyzed using high-resolution transmission electron microscopy (HRTEM) and Transmission electron microscopy (TEM). A one step synthesis for gold and silver nanoparticles was optimized with an eco-friendly and economic process.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Enrique Morales-Avila ◽  
Guillermina Ferro-Flores ◽  
Blanca E. Ocampo-García ◽  
Gustavo López-Téllez ◽  
Johnny López-Ortega ◽  
...  

Recent studies have demonstrated that drug antimicrobial activity is enhanced when metallic nanoparticles are used as an inorganic support, obtaining synergic effects against microorganisms. The cationic antimicrobial peptide ubiquicidin 29–41 (UBI) has demonstrated high affinity and sensitivity towards fungal and bacterial infections. The aim of this research was to prepare and evaluate the antimicrobial efficacy of engineered multivalent nanoparticle systems based on silver or gold nanoparticles functionalized with UBI. Spectroscopy techniques demonstrated that NPs were functionalized with UBI mainly through interactions with the -NH2 groups. A significant increase in the antibacterial activity against Escherichia coli and Pseudomonas aeruginosa was obtained with the conjugate AgNP-UBI with regard to that of AgNP. No inhibition of bacterial growth was observed with AuNP and AuNP-UBI using a nanoparticle concentration of up to 182 μg mL−1. Nonetheless, silver nanoparticles conjugated to the UBI antimicrobial peptide may provide an alternative therapy for topical infections.


2021 ◽  
Vol 22 (4) ◽  
pp. 1905
Author(s):  
Jimmy Gouyau ◽  
Raphaël E. Duval ◽  
Ariane Boudier ◽  
Emmanuel Lamouroux

Multidrug-resistant (MDR) bacteria constitute a global health issue. Over the past ten years, interest in nanoparticles, particularly metallic ones, has grown as potential antibacterial candidates. However, as there is no consensus about the procedure to characterize the metallic nanoparticles (MNPs; i.e., metallic aggregates) and evaluate their antibacterial activity, it is impossible to conclude about their real effectiveness as a new antibacterial agent. To give part of the answer to this question, 12 nm gold and silver nanoparticles have been prepared by a chemical approach. After their characterization by transmission electronic microscopy (TEM), Dynamic Light Scattering (DLS), and UltraViolet-visible (UV-vis) spectroscopy, their surface accessibility was tested through the catalytic reduction of the 4-nitrophenol, and their stability in bacterial culture medium was studied. Finally, the antibacterial activities of 12 nm gold and silver nanoparticles facing Staphylococcus aureus and Escherichia coli have been evaluated using the broth microdilution method. The results show that gold nanoparticles have a weak antibacterial activity (i.e., slight inhibition of bacterial growth) against the two bacteria tested. In contrast, silver nanoparticles have no activity on S. aureus but demonstrate a high antibacterial activity against Escherichia coli, with a minimum inhibitory concentration of 128 µmol/L. This high antibacterial activity is also maintained against two MDR-E. coli strains.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-17
Author(s):  
Caroline Jepchirchir Kosgei ◽  
Meshack Amos Obonyo ◽  
Josphat Clement Matasyoh ◽  
James J. Owuor ◽  
Moses A. Ollengo ◽  
...  

Common methods of synthesizing metallic nanoparticles are chemical and physical. However, they are expensive and use toxic chemicals. Green synthesis is less costly and safer hence a potential alternative. Silver nanoparticles (Ag NPs) were synthesized using dichloromethane extract of Chrysanthemum cinerariaefolium and colour change from pale green to dark brown was observed. Scanning Electron Microscopy (SEM) images were faceted and others formed clusters. Transmission Electron Microscopy (TEM) images were spherical with an average size of 22.8± 17.5 nm. EDX analysis showed the nanoparticles had percentage abundance of 67.26%. Fourier-transform Infrared Spectroscopy (FTIR) analysis showed absorption bands at 3489.59 cm-1, 3217.80 cm-1, 2384.74 cm-1 , 1633.05 cm-1, 1405.08 cm-1, 1109.32 cm-1 and 505.93 cm-1. The UV-Vis analysis showed Surface Plasmon Resonance (SPR) peak at 434 nm. The nanoparticles were more active on P. aeruginosa with an MIC of 15 µg/ml while the cytotoxicity assay showed Ag NPs had an MIC of 33.33 µg/ml hence were noncytotoxic against Vero cells.


2011 ◽  
Vol 478 ◽  
pp. 7-12 ◽  
Author(s):  
Ashkan Tavakoli Naeini ◽  
Manouchehr Vossoughi ◽  
Mohsen Adeli

Linear-dendritic triblock copolymers of linear poly(ethylene glycol) and hyperbranched poly(citric acid) (PCA-PEG-PCA) were used as the reducing and capping agents to encapsulate gold and silver nanoparticles (AuNPs and AgNPs). PCA-PEG-PCA copolymers in four different molecular weights were synthesized using 2, 5, 10 and 20 citric acid/PEG molar ratios and were called A1, A2, A3 and A4, respectively. Nanoparticles were encapsulated simultaneously during the preparation process. AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl4 to aqueous solutions of A1, A2, A3 and A4. In the case of silver, an aqueous solution of AgNO3 was reduced using NaBH4 and AgNPs were encapsulated simultaneously by adding aqueous solutions of different PCA-PEG-PCA to protect the fabricated silver nanoparticles from aggregation. Encapsulated AuNPs and AgNPs were stable in water for several months and agglomeration did not occur. The synthesized silver and gold nanoparticles have been encapsulated within PCA-PEG-PCA macromolecules and have been studied using Transmission Electron Microscopy (TEM) and UV/Vis absorption spectroscopy. Studies reveal that there was a reverse relation between the size of synthesized AuNPs/AgNPs and the size of citric acid parts of PCA-PEG-PCA copolymers. For example, the prepared gold and silver nanoparticles by A3 copolymer are of an average size of 8 nm and 16 nm respectively. Finally, the loading capacity of A1, A2, A3 and A4 and the size of synthesized AuNPs and AgNPs were investigated using UV/Vis data and the corresponding calibration curve. It was found that the loading capacity of copolymers depends directly on the concentration of copolymers and their molecular weight.


Author(s):  
Ubaid Rasool ◽  
Davoodbasha Mubarak Ali ◽  
Hemalatha S.

Nanoparticles are also proving a great alternative to antibiotics in combating the deadly bacterial infections. Copper nanoparticles, in particular, are being utilized as antimicrobial agents as well as their interaction with other particles helps to improve the antimicrobial efficacy. Compared to other metallic nanoparticles, copper nanoparticles are highly reactive, and their small size allows them to be used in different areas. When exposed to air, copper nanoparticles form copper oxide, and to prevent this oxidation, silica and carbon are utilized to coat copper nanoparticles. Metallic copper nanoparticles have been used in place of silver nanoparticles and other noble metals as anti-infective agents and also utilized in in water purification.


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800
Author(s):  
Lina Han ◽  
Yeong Shik Kim ◽  
Seonho Cho ◽  
Youmie Park

We report the use of water extracts of two invertebrates, snail body and earthworm, as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. The reaction conditions were optimized by varying the extract concentration, gold ion or silver ion concentration, reaction time, and reaction temperature. The gold and silver nanoparticles exhibited their characteristic surface plasmon resonance bands. Mostly spherical and amorphous shapes of the nanoparticles were synthesized. The average diameters of the gold and silver nanoparticles were 4.56 ± 1.81 nm and 11.12 ± 5.25 nm, respectively, when the extract of snail body was used as the reducing agent. The earthworm extracts produced gold and silver nanoparticles with average diameters of 6.70 ± 2.69 nm and 12.19 ± 4.28 nm, respectively. This report suggests that the invertebrate natural products have potential as biocompatible reducing agents for the green synthesis of metallic nanoparticles. This utility would open up novel applications of invertebrate natural products as nanocomposites and in nanomedicine.


Sign in / Sign up

Export Citation Format

Share Document