Aerosol Effects on Temperature Forecast in the COSMO-Ru Model

2021 ◽  
pp. 29-39
Author(s):  
A. A. Poliukhov ◽  
◽  
D. V. Blinov ◽  
◽  

Aerosol effects on the forecast of surface temperature, as well as temperature at the levels of 850 and 500 hPa over Europe and the European part of Russia are studied using various aerosol climatologies: Tanre, Tegen, and MACv2. The numerical experiments with the COSMO-Ru model are performed for the central months of the seasons (January, April, July, and October) in 2017. It is found that a change in the simulated surface air temperature over land can reach 1C when using Tegen and MACv2 data as compared to Tanre. At 850 and 500 hPa levels, the changes do not exceed 0.4C. At the same time, it is shown that a decrease in the root-mean-square error of 2-m air temperature forecast at individual stations reaches 0.5C when using Tegen and MACv2 data and 1C for clear-sky conditions in Moscow.

Solar Energy ◽  
2014 ◽  
Vol 107 ◽  
pp. 122-134 ◽  
Author(s):  
Miroslav Kocifaj ◽  
Ladislav Kómar ◽  
Igor Kohút

2015 ◽  
Vol 9 (1) ◽  
pp. 975-1019 ◽  
Author(s):  
J. P. Conway ◽  
N. J. Cullen

Abstract. A thorough understanding of the influence of clouds on glacier surface energy balance (SEB) and surface mass balance (SMB) is critical for forward and backward modelling of glacier–climate interactions. A validated 22 month time series of SEB/SMB was constructed for the ablation zone of the Brewster Glacier, using high quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than the minimal change in air temperature and wind speed. During overcast conditions, positive net longwave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and the occurrence of precipitation, which enabled a strong accumulation–albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. There is a need to include the effects of atmospheric moisture (vapour, cloud and precipitation) on melt processes when modelling glacier–climate interactions.


Author(s):  
YU. P. PEREVEDENTSEV ◽  
◽  
A. A. VASIL’EV ◽  
B. G. SHERSTYUKOV ◽  
K. M. SHANTALINSKII ◽  
...  

The spatiotemporal variability of surface air temperature and precipitation in Russia is considered using the data from 1251 stations for two periods: 1976-2019 and 2001-2019. Main attention is paid to the analysis of trends in the above characteristics, which made it possible to estimate the scale of climate warming in recent decades. The connection between the atmospheric circulation indices (NAO, AO, EAWR, SCAND) and temperature fluctuations in the European part of Russia is revealed.


2010 ◽  
Vol 49 (12) ◽  
pp. 2574-2590 ◽  
Author(s):  
Eduardo Barbaro ◽  
Amauri P. Oliveira ◽  
Jacyra Soares ◽  
Georgia Codato ◽  
Maurício J. Ferreira ◽  
...  

Abstract This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m−2; January), and the minimum is observed during winter (332 ± 12 W m−2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m−2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m−2) at 0900 LT and a maximum (345 ± 12 W m−2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 428
Author(s):  
Sergey O. Grinevskiy ◽  
Sergey P. Pozdniakov ◽  
Ekaterina A. Dedulina

Groundwater recharge by precipitation is the main source of groundwater resources, which are widely used in the European part of Russia (ER). The main goal of the presented studies is to analyze the effect of observed climate changes on the processes of groundwater recharge. For this purpose analysis of long-term meteorological data as well as water budget and groundwater recharge simulation were used. First, meteorological data of 22 weather stations, located from south (Lat 46°) to north (Lat 66°) of ER for historical (1965–1988) and modern (1989–2018) periods were compared to investigate the observed latitudinal changes in annual and seasonal averages of precipitation, wind speed, air temperature, and humidity. Second, water budget in critical zone was simulated, using codes SURFBAL and HYDRUS-1D. SURFBAL generates upper boundary conditions for unsaturated flow modelling with HYDRUS-1D, taking into account snow accumulation and melting as well as topsoil freezing, which are important processes that affect runoff generation and the infiltration of meltwater. Water budget and groundwater recharge simulations based on long-term meteorological data and soil and vegetation parameters, typical for the investigated region. The simulation results for the historical and modern periods were compared to find out the impact of climate change on the average annual and seasonal averages of surface runoff, evapotranspiration, and groundwater recharge, as well as to assess latitudinal differences in water budget changes. The results of the simulation showed, that despite a significant increase in air temperature, groundwater recharge in the southern regions did not change, but even increased up to 50–60 mm/year in the central and northern regions of ER. There are two main reasons for this. First, the observed increase in air temperature is compensated by a decrease in wind speed, so there was no significant increase in evapotranspiration in the modern period. Also, the observed increase in air temperature and precipitation in winter is the main reason for the increase in groundwater recharge, since these climate changes lead to an increase in water infiltration into the soil in the cold period, when there is no evapotranspiration.


2021 ◽  
Author(s):  
Yan Chen ◽  
Shunlin Liang ◽  
Han Ma ◽  
Bing Li ◽  
Tao He ◽  
...  

Abstract. Surface air temperature (Ta), as an important climate variable, has been used in a wide range of fields such as ecology, hydrology, climatology, epidemiology, and environmental science. However, ground measurements are limited by poor spatial representation and inconsistency, while reanalysis and meteorological forcing datasets suffer from coarse spatial resolution and inaccuracy. Previous studies using satellite data have mainly estimated Ta under clear-sky conditions, or with limited temporal and spatial coverage. In this study, an all-sky daily mean Ta product at 1 km spatial resolution over mainland China for 2003–2019 has been generated mainly from the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Global Land Data Assimilation System (GLDAS) dataset. Three Ta estimation models based on random forest were trained using ground measurements from 2384 stations for three different clear-sky and cloudy-sky conditions. The validation results showed that R2 and root mean square error (RMSE) values of the three models ranged from 0.984 to 0.986 and 1.342 K to 1.440 K, respectively. We examined the spatiotemporal patterns and land cover type dependences of model accuracy. The relative contributions of different features to models were also quantitatively analysed. Finally, values of our Ta product in 2010 were validated and compared with the China Land Data Assimilation System (CLDAS) dataset at 0.0625° spatial resolution, China Meteorological Forcing Data (CMFD) dataset at 0.1° spatial resolution and GLDAS dataset at 0.25° spatial resolution. The R2 and RMSE values of our product were 0.992 and 1.010 K, respectively, indicating this high-resolution satellite product has significantly higher accuracy. In summary, the all-sky daily mean Ta dataset developed in this study has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in the studies of climate change and hydrological cycle. This dataset is freely available at http://doi.org/10.5281/zenodo.4399453 (Chen et al., 2021b) and the University of Maryland (http://glass.umd.edu/Ta_China/) currently. A sub-dataset that covers Beijing generated from this dataset is publicly available at http://doi.org/10.5281/zenodo.4405123 (Chen et al., 2021a).


Sign in / Sign up

Export Citation Format

Share Document