scholarly journals Characteristics of Mixed Porus Asphalt with Combination of LDPE, CPO and PEN 60/70

Author(s):  
Meidia Refiyanni ◽  
Chaira Chaira

The quality of the road depends on the pavement, drainage conditions, and materials. For this reason, it is necessary to make innovations in improving the quality of road pavement, one of which is increasing the material. There are many types of pavements, one of which is porous asphalt pavement. Porous asphalt has many cavities that is easy for water to pass but has a low stability value with high           permeability. This research will utilize Low Density Poly Ethylene (LDPE), as an additive, CPO, and Pen 60/70 in a porous asphalt mixture. The purpose of this study was to determine the characteristics of the porous asphalt mixture by substituting LDPE and CPO for Pen 60/70. The method used in analyzing the characteristics of the porous asphalt mixture refers to the specifications of the Australis Asphalt Pavement Association (AAPA) (2014), with parameters Camtabro Loss (CL), Asphalt Flow Down (AFD), VIM, stability and flow. The gradation used in this study is an open gradation. This research was started from determining the value of Optimum Asphalt Content (KAO), with two variations, namely Variation 1 (1% LDPE, 10% CPO, 89% pen 60/70), variation 2 (5% LDPE, 10% CPO, 85% Pens 60/70). The KAO value of variation 1 is 5.03% and the second variation is 4.75%. After obtaining the KAO value, LDPE and CPO are substituted. The test results for the porous asphalt mixture for CL values were 34.12% and 27.07%, respectively; AFD value of 0.13% and 0.12%; for the VIM value of 14.90% and 19.03%; stability value 603.24 kg and 603.19 kg; and flow values are 5.03 mm and 4.80 mm. In general, the value obtained from the test meets the required requirements. However, the durability value of the mixture did not meet the requirements, namely 60.15% and 48.22%, with the condition >90%.

2018 ◽  
Vol 45 ◽  
pp. 00114
Author(s):  
Lesław Bichajło ◽  
Krzysztof Kołodziej

The paper characterizes the porous asphalt mixture used in pavement construction. This kind of pavement can reduce traffic noise and reduce the slipperiness of the road pavement. The effectiveness of the porous asphalt depends on many design and technological aspects, but especially on the air-void clearance in the pavement layer. The paper includes the results of water permeability research based on laboratory tests of specimens from actual road pavement. The research shows the differences between the contamination of the road pavement sections located inside and outside the city. The paper includes recommendations for using porous asphalt based on experiences under Polish conditions.


2020 ◽  
Vol 3 (3) ◽  
pp. 613
Author(s):  
Ewaldo Tanton ◽  
Anissa Noor Tajudin

The increasing number of vehicles but not followed by increasing the quality of pavement will cause many roads to be damaged. One of the efforts to improve the quality of road pavement is by adding various additional ingredients. For this research the method of mixing asphalt with carbon fiber uses the Dry-Mix method, where carbon fiber is directly mixed when cooking asphalt. By using a variation of 0,1%; 0,2%; 0,3% and 0,4% carbon fiber, and with asphalt content of 5,7%. After obtaining asphalt mixture data, the research continued to determine the optimum carbon fiber content using the narrow range method. Then proceed to change the stability of Marshall into modulus then included in the KENPAVE program. Then the test results can be seen in the Nd and Nf values and the Nr value requirement of <2, which values are based on General Specifications of the Directorate General of Highways 2017 Edition. The results of this study have met all the requirements that have been set and based on the value of Nd and Nf it can be concluded that the use of carbon fiber asphalt mixture additives can be used in an effort to reduce the cost of asphalt treatment.ABSTRAKPeningkatan jumlah kendaraan namun tidak diikuti dengan peningkatan kualitas perkerasan jalan akan menyebabkan banyak jalan yang mengalami kerusakan. Salah satu upaya untuk meningkatkan kualitas perkerasan jalan adalah dengan menambahkan bahan tambah yang bervariasi. Untuk penelitian ini cara pencampuran aspal dengan serat karbon menggunakan metode Dry-Mix, dimana serat karbon secara langsung dicampurkan pada saat memasak aspal. Dengan menggunakan variasi kadar serat karbon 0,1%; 0,2%; 0,3% dan 0,4%, serta dengan kadar aspal 5,7%. Setelah didapatkan data campuran aspal penelitian dilanjutkan untuk menentukan kadar serat karbon optimum dengan metode Narrow Range. Kemudian dilanjutkan mengubah stabilitas Marshall menjadi modulus kemudian dimasukkan ke dalam program KENPAVE. Kemudian hasil pengujian tersebut dapat dilihat pada nilai Nd dan Nf dan syarat nilai Nr yaitu <2, yang dimana nilai-nilai tersebut berdasarkan Spesifikasi Umum Direktorat Jendral Bina Marga Edisi 2017. Hasil dari penelitian ini telah memenuhi seluruh syarat yang telah ditetapkan dan berasarkan nilai Nd dan Nf dapat disimpulkan bahwa penggunaan serat karbon terhadap bahan tambahan campuran aspal dapat digunakan dalam usaha mengurangi biaya perawatan aspal.


2019 ◽  
Vol 2 (2) ◽  
pp. 149-157
Author(s):  
Hendra Arianto ◽  
Sofyan M. Saleh ◽  
Renni Anggraini

Reuse of reclaimed asphalt pavement material (RAP) is an alternative which applicated for potential enough on the roughness of the road. RAP material can be reused by adding the asphalt and the new aggregate according of the mixture composition so that it is expected will be obtained the quality as planned. One of the efforts made in improving the quality of asphalt mixture RAP material is using a modified asphalt with additional material, such as styrofoam. The use of styrofoam into the asphalt is expected to improve the technical properties of a mixture. The purpose of this research is to know the comparative characteristics of hot mix asphalt (asphalt concrete) type AC-WC that uses RAP material with additional asphalt pen. 60/70 and asphalt pen. 60/70 substitution in the styrofoam by 8%, 10% and 12% against the weight of asphalt based on levels of asphalt left on the material. The initial stages of this study is to conduct an examination of the physical properties of RAP material, then manufacturing a specimen with variations of the addition of asphalt and aggregate new levels based on the job mix diesign (JMD) Bina Marga Aceh (2013). Based on research results, parameter values marshall on all types of asphalt mixture with new aggregate as well as RAP materials and the use of 100% asphalt pen. 60/70 additional or different types of asphalt on OAC has fulfilled the technical specifications defined by the Bina Marga (2014). Best stability values obtained on asphalt mixture using RAP material with additional asphalt pen. 60/70 with 12% styrofoam substitution on OAC JMD Bina Marga Aceh, that amounted to 3,308.72 kg, the lowest value stability retrieved on asphalt mixture using a new aggregate based on the results of Department of Bina Marga Aceh on OAC i.e. of 983.94 kg.


2017 ◽  
Vol 14 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Kabiru Abdullahi Ahmad ◽  
Mohd Ezree Abdullah ◽  
Norhidayah Abdul Hassan ◽  
Hussaini Ahmad Daura ◽  
Kamarudin Ambak

Purpose Porous asphalt has been used for than 50 years, but it was originally developed in 1970 at Franklin institute in Philadelphia, Pennsylvania. By 1974 the first formalized procedure was created by the federal highway administration to design mixtures. Many researches on porous asphalt mixture have been conducted for the past two decades. However, there remains some concern about the potential adverse impacts of infiltrated surface water on the underlying groundwater. The purpose of this paper is to presents a short review on the application of porous asphalt pavement stormwater treatment. Design/methodology/approach In this paper, a critical review on history and benefits is presented followed by review of general studies of using porous asphalt pavement, and some recent scientific studies that examine potential contamination of soil and groundwater because of infiltration systems. Findings This paper indicates that porous asphalt pavement is more efficient than conventional pavements in terms of retaining pollutants, improving the quality of water and runoff while maintaining infiltration. Originality/value This paper may also help reduce land consumption by reducing the need for traditional storm-water management structures. However, on the other hand, the priority objectives which is minimizing increased flooding and pollution risks while increasing performance efficiency and enhancing local environmental quality-of-life is achieved.


2018 ◽  
Vol 1 (3) ◽  
pp. 657-666
Author(s):  
Leni Arlia ◽  
Sofyan M. Saleh ◽  
Renni Anggraini

Abstract: Porous asphalt has low stability but has high permeability caused by the amount of voids in mixture. For that need to be added other materials to increase the value of the stability on a mixture of pavement. . In this study, the added material used is gum rosin. Gum rosin is obtained by distillation/distillation of the sap from the tree pinus merkusii shaped solid clear yellow to dark yellow. The objecteve of this research is to determine the characteristics of porous asphalt mixture by substituting gum rosin on asphalt penetration 60/70. The specimens preparation of Optimum Asphalt Content (OAC) followed Australian Asphalt pavement Association (AAPA) Method by  parameter of Cantabro Loss (CL), Asphalt Flow Down (AFD), and Voids In Mix (VIM). Open graded  aggregate was applied and variation in bitumen content of 4,5 %; 5%; 5,5%; 6%; and 6,5% excluding gum rosin. Marshall test and calculatio, CL, and AFD were conducted afterward to obtain OAC. Subsequently, the OAC obtained was used to prepare some specimens of the OAC with  variations  ± 0.5 from the OAC and gum rosin variations of 2%, 4%, 6%, and 8%. Permeability and durability test then required specimens at the best optimum asphalt content. Based on this research, the content of the best OAC was 5.56% with gum rosin content of 8% as bitumen substitution material. Besides, almost  all parameter values met the specification of the AAPA (2004). The addition of rosin affect the value of the characteristic of Marshall, CL, and AFD, which increasing the value of stability, VIM, CL, and AFD  along with the increasein percentage of gum rosin. According to the best OAC the value of stability was 554.81 kg, the value of VIM was 18.04%, the value of CL was 20.66%, and the value of AFD was 0.28%.Abstrak: Aspal porus memiliki stabilitas yang rendah namun memiliki permeabilitas tinggi yang disebabkan oleh banyaknya rongga dalam campuran. Untuk itu perlu ditambahkan material lain untuk meningkatkan nilai stabilitas pada campuran perkerasan. Pada penelitian ini bahan tambah yang digunakan adalah gondorukem. Gondorukem merupakan hasil destilasi/penyulingan getah dari pohon pinus merkusii yang berbentuk padat berwarna kuning jernih sampai kuning tua. Tujuan penelitian ini adalah untuk mengetahui karakteristik campuran aspal porus dengan substitusi gondorukem ke dalam aspal penetrasi 60/70. Pembuatan benda uji untuk penentuan kadar aspal optimum (KAO) digunakan metode Australian Asphalt pavement Association (AAPA) dengan parameter nilai cantabro loss (CL), asphalt flow down (AFD), dan voids in mix (VIM). Gradasi agregat yang digunakan adalah gradasi terbuka dengan kadar aspal 4,5 %; 5%; 5,5%; 6%; dan 6,5% tanpa variasi penggunaan gondorukem. Selanjutnya dilakukan pengujian dan perhitungan Marshall, CL, dan AFD untuk mendapatkan KAO. Setelah KAO diperoleh, dibuat benda uji pada KAO dan variasi ± 0,5 dari nilai KAO dengan variasi substitusi gondorukem  sebesar 2%, 4%, 6%, dan 8%. Berdasarkan hasil penelitian KAO terbaik pada 5,56% dengan substitusi 8% gondorukem, dimana semua parameternya telah memenuhi spesifikasi yang disyaratkan AAPA (2004). Penambahan gondorukem berpengaruh terhadap nilai karakteristik Marshall, CL, dan AFD, dimana meningkatkan nilai stabilitas, VIM, CL, dan AFD seiring dengan peningkatan persentase gondorukem. Pada KAO terbaik diperoleh nilai stabilitas sebesar 554,81 kg, nilai VIM sebesar 18,04%, nilai CL sebesar 20,66%, dan nilai AFD sebesar 0,28%.


2019 ◽  
Vol 276 ◽  
pp. 03005
Author(s):  
Elsa Eka Putri ◽  
Oliensia Vasilsa

Porous asphalt is a gap graded pavement that is 20% air voids which enables rainwater that falls on the road surface to flow through the pavement and into drainage on the side of the road. Porous asphalt has a high shear resistance and dries quickly but its stability is low, it is costly to maintain and needs replacing after only a short time. Despite these disadvantages, porous asphalt is still a good choice in area that experiences heavy annual rainfall. High Density Polyethylene (HDPE), an opaque plastic, is harder and stronger than porous asphalt with a tensile strength of 3100-5500 psi. It is resistant to high temperatures. This study aims to investigate the effect of various percentages of HDPE as an additive to produce an HDPE Asphalt Binder for porous asphalt pavement. Marshall parameters were determined based on the AAPA 2004 standard. It was found that 4% HDPE achieved a maximum stability value of 870 kg at the optimum asphalt content for porous asphalt pavement was 5.54%. Stability of porous asphalt pavement with optimum asphalt content value was 61.1% higher after the addition of HDPE. Thus, the use of HDPE as an additive in Asphalt Binder was able to increase the binding strength of the asphalt minimising the disadvantages of the low stability of traditional porous asphalt pavement.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5523
Author(s):  
Jingsheng Pan ◽  
Hua Zhao ◽  
Yong Wang ◽  
Gang Liu

The influence of sand accumulation on the skid resistance of asphalt pavement was studied. Many scholars have researched the anti-skid performance of conventional asphalt pavements. However, there is a lack of research on the anti-skid performance of desert roads under the condition of sand accumulation. In this study, AC-13 and AC-16 asphalt mixtures were used. The British Pendulum Number (BPN) under different sand accumulations was measured with a pendulum friction coefficient meter, and the Ames engineering texture scanner was used to obtain different sand accumulations. The texture index of asphalt mixture was used to study the macro and micro texture of asphalt pavement under different amounts of sand accumulation, and the degree of influence of different particle sizes on BPN was obtained through gray correlation analysis. The test results show that the presence of aeolian sand has a significant impact on the macro and micro texture of the asphalt pavement and will cause the anti-skid performance to decrease. Moreover, there is an apparent positive linear correlation between the road surface texture index and BPN. The research results may provide reference and reference for the design and maintenance of desert highways.


2007 ◽  
Vol 13 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Piotr Radziszewski

Permanent deformations, primarily in the form of ruts, are one of the basic asphalt pavement damages impairing its service properties. Application of appropriate asphalt mixtures and binder modification are effective methods for improving asphalt courses resistance. While being manufactured, stored, fitted into a road pavement and during long term service, bitumen binders and asphalt mixtures are subject to continuous unfavourable ageing processes during which pavement courses characteristics change considerably, resistance to permanent deformations being among them. This article presents rut and dynamic creep test results of concrete, SMA (stone mastic asphalt), MNU (thin courses of non‐continuous grain mixtures), Superpave mixture and porous asphalt mixture of two air void content percentages: 15 %, 20 %. Asphalt concrete mixtures, MNU's and porous asphalt mixtures contained elastomer, plastomer and fine rubber modified binders. Samples for laboratory rut tests were made by slab compaction because this method, as the author's previous research had shown, was the closest to ‘in‐situ’ conditions. Resistance to permanent deformations of the examined specimens was evaluated before aging, after technological aging (short term ageing) and after service ageing (long‐term ageing). The test results show that resistance to permanent deformations depends on the kind of asphalt mixture and binder applied. Concrete asphalts with fine rubber modified bitumens and concrete asphalts with 7 % polymer modified binders as well as SMA's and Superpave mixtures with unmodified binders appeared to be most resistant to permanent deformations after a long‐term laboratory ageing. It was proved that the overall evaluation of resistance to permanent deformations could be obtained by rut and creep testing of asphalt mixtures exposed to short‐ and long‐term ageing. Simultaneous determining 4 parameters: maximum rut depth after short‐term ageing, rutting coefficient after operational ageing, stiffness creeping modulus after long‐term ageing and cumulated deformation after short‐term ageing, facilitates full characteristics of modified asphalt mixes designed to be built in the wearing course of a road pavement.


2021 ◽  
Vol 876 ◽  
pp. 39-44
Author(s):  
Bahruddin ◽  
Arya Wiranata ◽  
Alfian Malik

The use of natural rubber-like crepe rubber as an asphalt additive is very susceptible to aging. Aging on asphalt crepe rubber can occur during the mixing process or its use for the road. Studies on the prevention of aging on asphalt are still being developed to produce asphalt resistance to aging and have good performance in preventing deformation. Some studies that have been done are the addition of other additives such as antioxidants. This study aims to study the effect of adding crepe rubber and the antioxidant 1,2-dihydro-2,2,4-trimethyl-quinoline (TMQ) to the Marshall characteristics of rubber asphalt. Preparation of the rubber asphalt sample begins with making crepe rubber, which is by milling raw natural rubber in the form of a cup lump using a creeper. The crepe rubber product contains dry rubber content of more than 95%. Then the crepe rubber masticated using an open mill to soften and form it with 2 mm thickness. Then the crepe rubber is melted at 200 °C before being mixed with asphalt, heated to 165 °C. The crepe rubber content in the asphalt mixture is made 10%, and during the mixing process, the TMQ was added with contents of 0%, 1%, 2%, 3% w/w. The rubber asphalt samples were then tested for their penetration and marshall characteristics, using ASTM D5 and ASTM D6927 standards. The test results show that the addition of the TMQ can improve the penetration properties and stability of the rubber asphalt in holding the load. However, the addition of the TMQ of more than 2% causes a decrease in the rubber asphalt's stability properties. The best results were obtained by adding 2% TMQ with 68.7 dmm penetration and optimum asphalt content of 5.50%. Results of the marshall test for the sample are marshall stability 1403.96 kg, void filled aggregate (VFA) 75.90%, void in a mixture (VIM) 3.07%, void mineral aggregate (VMA) 15.34%, flow 3.370 mm, and marshall quotient (MQ) 420.8 kg/mm.


2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


Sign in / Sign up

Export Citation Format

Share Document