Effects of 1,2-Dihydro-2,2,4-Trimethyl-Quinoline (TMQ) Antioxidant on the Marshall Characteristics of Crepe Rubber Modified Asphalt

2021 ◽  
Vol 876 ◽  
pp. 39-44
Author(s):  
Bahruddin ◽  
Arya Wiranata ◽  
Alfian Malik

The use of natural rubber-like crepe rubber as an asphalt additive is very susceptible to aging. Aging on asphalt crepe rubber can occur during the mixing process or its use for the road. Studies on the prevention of aging on asphalt are still being developed to produce asphalt resistance to aging and have good performance in preventing deformation. Some studies that have been done are the addition of other additives such as antioxidants. This study aims to study the effect of adding crepe rubber and the antioxidant 1,2-dihydro-2,2,4-trimethyl-quinoline (TMQ) to the Marshall characteristics of rubber asphalt. Preparation of the rubber asphalt sample begins with making crepe rubber, which is by milling raw natural rubber in the form of a cup lump using a creeper. The crepe rubber product contains dry rubber content of more than 95%. Then the crepe rubber masticated using an open mill to soften and form it with 2 mm thickness. Then the crepe rubber is melted at 200 °C before being mixed with asphalt, heated to 165 °C. The crepe rubber content in the asphalt mixture is made 10%, and during the mixing process, the TMQ was added with contents of 0%, 1%, 2%, 3% w/w. The rubber asphalt samples were then tested for their penetration and marshall characteristics, using ASTM D5 and ASTM D6927 standards. The test results show that the addition of the TMQ can improve the penetration properties and stability of the rubber asphalt in holding the load. However, the addition of the TMQ of more than 2% causes a decrease in the rubber asphalt's stability properties. The best results were obtained by adding 2% TMQ with 68.7 dmm penetration and optimum asphalt content of 5.50%. Results of the marshall test for the sample are marshall stability 1403.96 kg, void filled aggregate (VFA) 75.90%, void in a mixture (VIM) 3.07%, void mineral aggregate (VMA) 15.34%, flow 3.370 mm, and marshall quotient (MQ) 420.8 kg/mm.

2015 ◽  
Vol 768 ◽  
pp. 402-405 ◽  
Author(s):  
Can Hua Li ◽  
Xiao Dong Xiang ◽  
Xian Xian Qin

A new method to make SMA is developed by using SBS modified asphalt when the coarse aggregate steel slag and the fine basalt aggregate are selected respectively. The Mix Proportion is 1#(16-9.5mm, steel slag):2#(9.5-4.75mm, steel slag):3#(3-4.75mm, basalt):4#(3-0mm, basalt):5# (mineral powder)=38%:36%:8%:8%:10%.The optimal asphalt content (OAC) is 6.4%. The mass percentage of steel slag is reached 74%. The costs of this kind of high quality road material can be saved because the amount of asphalt is not increased. Based on Marshall Stability and Splitting Strength test, it is shown that the Marshall stability of SMA is 10.6 kN, dynamic stability is 7800, and tensile strength ratio is 89.2%. All above test values are superior to the standards in China's traffic regulations. The water permeability coefficient of SMA is 65, which means that SMA has an excellence Wear-Resistant performance. Therefore, SMA can increase the road useful life and reduce the road maintenance costs.


Author(s):  
Meidia Refiyanni ◽  
Chaira Chaira

The quality of the road depends on the pavement, drainage conditions, and materials. For this reason, it is necessary to make innovations in improving the quality of road pavement, one of which is increasing the material. There are many types of pavements, one of which is porous asphalt pavement. Porous asphalt has many cavities that is easy for water to pass but has a low stability value with high           permeability. This research will utilize Low Density Poly Ethylene (LDPE), as an additive, CPO, and Pen 60/70 in a porous asphalt mixture. The purpose of this study was to determine the characteristics of the porous asphalt mixture by substituting LDPE and CPO for Pen 60/70. The method used in analyzing the characteristics of the porous asphalt mixture refers to the specifications of the Australis Asphalt Pavement Association (AAPA) (2014), with parameters Camtabro Loss (CL), Asphalt Flow Down (AFD), VIM, stability and flow. The gradation used in this study is an open gradation. This research was started from determining the value of Optimum Asphalt Content (KAO), with two variations, namely Variation 1 (1% LDPE, 10% CPO, 89% pen 60/70), variation 2 (5% LDPE, 10% CPO, 85% Pens 60/70). The KAO value of variation 1 is 5.03% and the second variation is 4.75%. After obtaining the KAO value, LDPE and CPO are substituted. The test results for the porous asphalt mixture for CL values were 34.12% and 27.07%, respectively; AFD value of 0.13% and 0.12%; for the VIM value of 14.90% and 19.03%; stability value 603.24 kg and 603.19 kg; and flow values are 5.03 mm and 4.80 mm. In general, the value obtained from the test meets the required requirements. However, the durability value of the mixture did not meet the requirements, namely 60.15% and 48.22%, with the condition >90%.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


UKaRsT ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Dwi Kartikasari ◽  
Samsul Arif

However, flexible pavement has many disadvantages, such as early damage to the road surface after some time has passed by traffic so the road cannot reach the planned age. For this reason, a research was carried out to add hot asphalt mixture which aims to improve the quality of the mixture, the selected material is natural water hyacinth. The method used is trial and error with reference SNI 031737-1989. Variations used were 3%, 5%, and 7% of asphalt weight, the level of asphalt used was 4.48%. Of the 3 variations of the mixture used in Type I Asphalt Concrete Layer, the results obtained that the water hyacinth fiber content that has the best score and meet the specifications of SNI 03-1737- 1989 is the percentage of 7% obtained. from the calculation data using graphs and regression models where Marshall Stability is 889.73 Kg, VFWA (voids filled with asphalt) are equal to 65.97%, VIM (voids in mixtures) are equal to 1.757%, VMA (voids in mineral aggregates ) is equal to 20.30%, density 2.420 gr / cc, Flow 3.37 mm, and Marshall Quotient of 265.80 Kg / mm.Keywords : flexible pavement, water hyacinth fiber, Marshall test.


2018 ◽  
Vol 21 (4) ◽  
pp. 516-522 ◽  
Author(s):  
Alaa Hussein Abed ◽  
Ali Hwaidi Nasser

The objective of this study is determining the mixing and compaction temperature of the modified asphalt mixture. Results of binder tests showed that the addition of 3% SBS  to control asphalt (PG 64-16) would achieve the desired performance level (PG 76-16) a performance grade that fits our climate with traffic loads. When using 5% SBS the performance grade of binder increased three grades (PG 82-16) and when increasing SBS content to 8% the performance grade increased four grades (PG 88-16). At shear rate of 500 (s-1), the modified asphalt viscosity can be obtained at different temperatures and the viscosity temperature curve can be achieved. As a result, the mixing and compaction temperature of modified asphalt can be determined to reach 0.17 ± 0.02 Pa.s and 0.28 ± 0.03 Pa.s for mixing and compaction, respectively. It is noted that SBS modified reached a viscosity of 3 Pa.s when 8 % additive. Additive contents above these values may not be suitable for good workability and pump ability according to Superpave specifications. While addition of 5% SBS with control asphalt, more than 3.7times at 135°C Increase the viscosity. Marshall Stability test indicated that the strength for the SBS specimens increases as compared to the conventional specimens. An increase of about 39%, 74%, 102%, was observed with 3%SBS 5%SBS 8%SBS modified binders, respectively. The Marshall test results for 8%SBS binders required compaction temperatures above 175°C need to keep up quality of HMA item while limiting natural effect amid development, these proposals are unsatisfactory Modified mixtures the 5% SBS modification was determined to be the maximum useful content. The Superpave method to estimate mixing and compaction temperatures show are not practical for use with modified binders. Also,  it is observed that good agreement values between the average Marshall compaction temperature and the High Shear Viscosity Method (HSRV) and   lower than Superpave methods Where the decline ranges from 15 ºC to 17 ºC.


2020 ◽  
Vol 10 (5) ◽  
pp. 1561 ◽  
Author(s):  
Hua Zhao ◽  
Bowen Guan ◽  
Rui Xiong ◽  
Aiping Zhang

This study is focused on the effect of basalt fiber on the road performance of the asphalt mixture. The road performance of asphalt mixture with different dosages of basalt fiber was comprehensively evaluated using Marshall Stability test, the wheel tracking test, the three-point bending beam test and the freezing-thaw splitting test. The road performance of lignin fiber reinforced asphalt mixture and polyester fiber reinforced asphalt mixture also were tested to compare with the road performance of basalt fiber reinforced asphalt mixture. The results showed that basalt fiber can enhance mechanical properties, the low-and high-temperature performance and water sensitivity of the asphalt mixture significantly. Considering the road performance and economic benefits, the appropriate dosage of basalt fiber is about 0.3%. Marshall Stability (MS), dynamic stability (DS), the maximum bending strain and the tensile strength ratio (TSR) of asphalt mixture with 0.3% basalt fiber were increased by 19.6%, 25.5%, 22.2% and 6.0%, respectively. Basalt fiber has certain advantages in improving the low-temperature performance of asphalt mixture by comparison with lignin fiber and polyester fiber.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanhui Zhong ◽  
Yilong Wang ◽  
Bei Zhang ◽  
Xiaolong Li ◽  
Songtao Li ◽  
...  

The rapid detection of asphalt content in asphalt mixture is of great significance to the quality evaluation of asphalt pavement. Based on the dielectric properties of an asphalt mixture, the prediction model of asphalt content is deduced theoretically using three types of dielectric models: Lichtenecker-Rother (L-R) model, Rayleigh model, and Bottcher equation. Under the condition of laboratory mixing at room temperature (about 20–25°C), a dielectric test of asphalt mixture is conducted to verify the applicability of the model. The test results indicate that the dielectric constant of the asphalt mixture is inversely proportional to the asphalt content and directly proportional to the aggregate size of the mixture. Among the models, the Rayleigh model has a wide range of applications and exhibits a high accuracy, with an average relative error of only 1.86%. The results provide a theoretical basis for the nondestructive testing of asphalt pavements using ground-penetrating radar.


2012 ◽  
Vol 193-194 ◽  
pp. 452-457 ◽  
Author(s):  
Meng Yun Huang ◽  
Jing Hui Liu ◽  
Xi Zhang ◽  
Dan Ni Li

Using the waste crumb rubber modified asphalt to pave the road surface could reduce cost and save energy. However,in order to obtain adequate workability, the mixing temperature and compaction temperature of rubberized asphalt binder and its mixture is much higher than those of conventional asphalt mixtures. Warm Mix Asphalt (WMA) is the name given to certain technologies that reduce the production and placement temperatures of asphalt mixes. One of the main benefits advertised is the increased workability at conventional and lower compaction temperatures with the WMA addition. This paper evaluates whether there are any synergy effects of using warm mix technologies and Asphalt Rubber(AR) hot mixes. This paper summarizes a lab research to evaluate the workability of Asphalt Rubber hot mixes containing warm mix technologies. Both asphalt binder and asphalt mixture were evaluated and compared. The research suggests that combining WMA technology with Asphalt Rubber mixtures is a win-win.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


Sign in / Sign up

Export Citation Format

Share Document