A Simple and Low - Cost Spectrophotometric Method for the Determination Of Hydrazine With Methyl Red-iodate System

2021 ◽  
Vol 30 (1) ◽  
pp. 01-06
Author(s):  
Madhurani Shukla ◽  
Kishore K. Tiwari

A simple, sensitive and inexpensive spectrophotometric method was developed for the determination of trace amount of hydrazine at microgram level. Hydrazine has been determined by its oxidation to nitrogen by using known excess of potassium iodate. In acidic medium potassium iodate bleaches the methyl red dye. A known excess of potassium iodate was reduced when treated with hydrazine and the unreacted potassium iodate is determined by using methyl red. The method was based on inhibitory effect of hydrazine on the reaction of methyl red dye and potassium iodate in presence of acidic medium. The absorbance of the methyl red after the reaction was monitored spectrophotometrically at 520 nm. The molar absorptivity is calculated to be 3.238×105 L mol-1cm-1. Beer’s law was obeyed over the concentration range of 1-10 µg of hydrazine in an overall aqueous volume of 25 ml with a correlation coeffcient of - 0.999. Sandell’s sensitivity was found to be 0.0004µg cm-2. The optimum reaction conditions like time, temperature, pH, reagent concentration, effect of foreign species etc. have been evaluated for the complete reaction. The developed method can be successfully applied for the determination of trace amount of hydrazine in environmental samples.

2021 ◽  
Vol 2063 (1) ◽  
pp. 012008
Author(s):  
S A Zakaria ◽  
R A Zakaria ◽  
N S Othman

Abstract A selective and sensitive spectrophotometric method has been suggested for the quantitative assay of atenolol (ATNL) as pure and in its manufactural formulation(Tablet). The suggested procedure included oxidation of ATNL with an excess quantity of the oxidant N-bromosuccinimide (NBS), and then the excess of NBS was occupied in bleaching the color of methyl red dye(MRD), then measuring the absorbance of remaining MRD at 518 nm. The absorbance of the unbleached color of MRD corresponds to the ATNL concentration in the sample solution. Beer’s law was followed in the range of 0.1-2.0 μg.ml−1with molar absorptivity value equal to 8.8864x104 l.mol−1. cm−1. The suggested method was applied to the assay of ATNL in commercial tablets, with satisfactory results.


1970 ◽  
Vol 24 ◽  
pp. 39-44 ◽  
Author(s):  
Buddha Ratna Shrestha ◽  
Raja Ram Pradhananga

Paracetamol with 1-napthol or resorcinol gave azodye and the concentration of paracetamol was investigated spectrophotometrically. The azodyes formed with both 1-napthol and resorcinol as coupling agents follow Lambert Beer's law in the range of 0 to 10 µgmL-1 of paracetamol. The molar absorptivity and Sandell's sensitivity for azodye coupled with 1-napthol were found to be 1.68×104 Lmol-1cm-1 and 9.0 ngmL-1cm-2, respectively. The molar absorptivity and Sandell's sensitivity for azodye coupled with resorcinol were found to be 2.86×104 Lmol-1cm-1 and 5.3 ngmL-1cm-2, respectively. Both coupling agents had been applied successfully in the analysis of paracetamol in pharmaceutical preparation. The relative standard deviation for all five samples ranged from 2.2-6.4% at 95% confidence. The percentage recoveries were found to range from 97.8 to 103.4. Both methods used in the present study may be applied to the determination of trace amount of paracetamol in different clinical samples. Keyword: Paracetamol; Spectrophotometric; 1-napthol; Resorcinol DOI: 10.3126/jncs.v24i0.2389 Journal of Nepal Chemical Society Vol. 24, 2009 Page: 39-44


2017 ◽  
Vol 9 (1) ◽  
pp. 58 ◽  
Author(s):  
Isam Eldin Hussein Elgailani ◽  
Tofeeg Haseen Alghamdi

This research aimed to develop inexpensive, safe, rapid, efficent spectrophotometric method for the assay of atenolol in some antihypertensive drugs namely Normoten in its pharmaceutical formulation. The studied method is depend on the reaction of the drug with phenol red in acidic medium, at pH 3.0. The analytical parameters have been investigated. The maximum absorbance was obtained at 429 nm and the molar absorptivity of 0.054 L mol-1 cm-1. Beer’s law is linear in the concentration range of 0.5-100 μg/mL for atenolol in Normoten. The detection and quantification limits were found to be 0.038 and 0.113μg/mL for the atenolol in Normoten respectively, and with a linear regression correlation coefficient of 0.997. The recovery was found to be 98.94 to 100.31%. The studied method is can be applied for the determination of atenolol (active ingredient) of the antihypertensive drugs in their pharmaceutical formulations.


2020 ◽  
Vol 13 (4) ◽  
pp. 394-401
Author(s):  
M.L.N. Acharyulu ◽  
P.V.S.R. Mohana Rao ◽  
I. Siva Ramakoti

Two visible spectrophotometric methods were developed Aand B for the determination of Darunavir in pure and pharmaceutical formulations. The methods are based on condensation reaction with PDAB (Method-A) and ONB (Method-B) in presence of acidic medium with the primaryamine group in DNV. The coloured products exhibit absorption λmax at 639 nm and 452nm for methods A and B respectively. Regression analysis of Beer-Lambert plots showed good correlation in the concentration ranges 10-60μg/ml, 50-300 μg/ml, correlation co-efficients are 0.9983, 0.9989;Sandell’s sensitivities are9.9833 x 10-3, 3.0456 x 10-2(1 mole cm-1); and molar absorptivity values are5.4857 x 104,1.7981x 104 (μg cm-2) for methods-Aand B respectively. The proposed methods are applied to commercial available formulations and the results are statistically compared with those obtained by the UV reference method and validated by recovery studies. The results are found satisfactory and reproducible. These methods are applied successfully for the estimation of the DNV in the presence of other ingredients that are usually present in formulations. These methods offer the advantages of rapidity, simplicity and sensitivity and low cost without the need for expensive instrumentation and reagents.


2020 ◽  
Vol 10 (02) ◽  
pp. 250-254
Author(s):  
Jamal Sudad Raeek Othman Nabeel Sabeeh

By reviewing the literature, there is no indication concerning the use of Leishman’s dye in evaluating drug compounds by dye-color bleaching; hence, it is the first attempt to use Leishman’s dye as a novel reagent in the estimation of chloramphenicol (CAP) by an indirect spectrophotometric method in bulk and in its pharmaceutical preparations. The method includes the use of a great amount of N-bromosuccinamide (NBS) in the acidic medium as an oxidizing agent of the drug under investigation (CAP), and then using the residual of NBS for Leishman’s dye color bleaching. The absorbance has been measured at 622 nm (the maximum absorption of Leishman’s dye). A linear relationship was obtained for the Beer’s law with the concentration ranges from 10 to 250 μg/10 mL with acceptable values of molar absorptivity 0.58 × 104 L.mol-1.cm-1 and 0.055 μg.cm-2 of Sandell’s sensitivity index, which mean a high sensitivity. An approved estimation of CAP in its various pharmaceutical formulations was found.


1989 ◽  
Vol 72 (6) ◽  
pp. 953-956 ◽  
Author(s):  
Muljibhai B Devani ◽  
Chamanlal J Shishoo ◽  
Shailesh A Shah ◽  
Bhanubhai N Suhagia

Abstract A new spectrophotometric method for the determination of nitrogen in Kjeldahl digest has been developed. The method is based on the reaction of ammonia with acetylacetone-formaldehyde reagent in aqueous medium to yield yellow 3,5-diacetyl- 1,4-dihydrolutidine with a characteristic absorption maxima at 412 nm. The effect of several experimental variables on the determination of nitrogen was studied. The method was suitable for determination of nitrogen in acidic medium without interference from the usual catalysts employed for the digestion in Kjeldahl method. Lambert-Beer’s law is obeyed in the concentration range of 0.5-6.0 ng nitrogen/mL in the reaction mixture. The molar absorptivity in terms of nitrogen was 1.4 X 103L mol-1 cm-1. The standard deviation and relative standard deviation were ±0.0447 and ±0.896% (n = 10), respectively. The method is simple, rapid, and precise. A variety of carbocyclic and heterocyclic nitrogen compounds have been analyzed for nitrogen content. The results are comparable with those obtained by AOAC method, 47.021.


Author(s):  
Amir Alhaj Sakur ◽  
Shaza Affas

Objective: To develop and validate simple, sensitive, precise and free of organic solvents method for the determination of sildenafil (SIL) and vardenafil (VAR) in bulk and pharmaceutical formulation.Methods: The method is based on the reaction of studied drugs with a mixture of potassium iodide and potassium iodate in an aqueous medium at (25±2 °C) to form yellow coloured triiodide ions (I3-) within 45 min. The reaction is followed spectrophotometrically by measuring the absorbance at 288, 351 nm and 285, 351 nm for sildenafil and vardenafil respectively.Results: The effects of analytical parameters on the reported systems were investigated. Beer's law of SIL was obeyed in the range of (0.4-12) μg ml-1and (0.6-16) μg ml-1. Molar absorptivity was found to be (67.659 ×103) lmol/cmand (37.955×103) lmol/cm at 288 nm, 351 nm respectively. Beer's law of VAR was obeyed in the range of (0.2-13) μg/mland (0.5-40) μg/ml. Moreover, molar absorptivity’s were found to be (68.719 ×103) l mol-1 cm-1and (26.691×103) l mol-1 cm-1 at 285 nm, 351 nm respectively.Conclusion: The proposed method has been applied to determine the components in dosage forms with an average recovery of 98.15% to 103.45% and the results have been found in good agreement with those results obtained by the reference methods.


2010 ◽  
Vol 7 (4) ◽  
pp. 1591-1597
Author(s):  
Mohsen Keyvanfard

A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of trace amounts of phenylhydrazine over the range of 0.02-0.30 μg/mL. The method is based on the inhibitory effect of phenylhydrazine on the oxidation of methyl red by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl red at 518 nm with a fixed-time 0.5–2.0 min from initiation of the reaction..The relative standard deviation of 0.08 and 0.2 μg/mL phenylhydrazine was 1.7 and 2.4%, respectively. The method was applied to the determination of phenylhydrazine in water samples.


2019 ◽  
Vol 31 (1) ◽  
pp. 27-31
Author(s):  
Ajay kumar Sahu ◽  
Shraddha Ganesh Pandey ◽  
Vindhya Patel ◽  
Raisa Khatoon ◽  
Mamta Nirmal ◽  
...  

A new spectrophotometric method has been developed for determination of fungicide myclobutanil is based on the bromination of myclobutanil to form dibromo myclobutanil which react with Potassium iodide-Potassium iodate mixture in the presence of leucocrystal voilet (LCV) to form a violet colored complex. The complex shows maximum absorbance at 590 nm. Beer’s law obeyed over the concentration range of 0.5-4.0 µg in final solution volume of 10 mL. The reproducibility assessed by carrying out seven days replicate analysis of a solution containing 10 µg of myclobutanil in a final solution of 10 mL. The molar absorptivity of the coloured system is 1.29×105 L mol-1cm-1 and Sandell’s sensitivity is 1.03×10-3 µg cm-2. The standard deviation and relative standard deviation for the absorbance value were found to be ±0.00652 and 1.14% respectively. The proposed method is free from the interference of other toxicants. The analytical parameters were optimized and the method was applied to the determination of myclobutanil in water, soil and food samples.


2021 ◽  
Vol 25 (7) ◽  
pp. 49-55
Author(s):  
Amita Garg ◽  
Radhika Khanna ◽  
Parveen Rathi

A simple and hasty method has been employed for the direct spectrophotometric determination of trace amount of Ce(IV) using a complexing agent 4,4’-diantipyryl methane (DAM) with absorption maximum at 445-455nm in acidic medium at 1.3 -1.5 pH. Molar absorptivity and Sandell’s sensitivity were calculated to be 9.1 × 103 l mol-1 cm-1 and 0.015 μg Ce cm-2. Beer’s law was found to be defensible over the cerium concentration range of 0-5.5 μg ml-1. Effect of large number of cations, anions and complexing agents was also studied and several analytically important ions do not cause interference in the procedure except thiourea and EDTA. The method has good reproducibility and has been satisfactorily applied in the determination of cerium in samples.


Sign in / Sign up

Export Citation Format

Share Document