The role of nanotechnology in the study of human DNA and delivery of drugs

2020 ◽  
Vol 6 (1) ◽  
pp. 01-02
Author(s):  
Ihtesham Shafiq ◽  
Faryal Ahmad ◽  
Fatima Ali

Increasingly, newer discoveries lead to innovative technologies that enable the study of existing phenomena as well as pave the way for advancement of other disciplines. One such field, that of Nanotechnology, offers unlimited promise and potential to enable researchers the ability to work at molecular or near-atomic levels. Medical applications are expected in vital areas of human health and disease, such as the structure and function of DNA, and the delivery of targeted drugs or other chemicals to areas of interest.

2020 ◽  
Vol 47 (4) ◽  
Author(s):  
N. Ya. Dotsenko ◽  
L. V. Gerasimenko ◽  
S. S. Boev ◽  
I. A. Shekhunova ◽  
A. V. Molodan ◽  
...  

Abstract The article presents a review of the literature on the role of myocardial fibrosis in the development of myocardial remodeling in patients with arterial hypertension. Information about the state of the structure and function of the extracellular matrix in health and disease is generalized. The characteristics of myocardial fibrosis biomarkers detection in the circulating blood are reflected. Keywords: arterial hypertension, myocardial fibrosis, extracellular matrix, collagen, biomarkers.


2020 ◽  
Vol 8 (11) ◽  
pp. 1744
Author(s):  
Lakshya Sharma ◽  
Antonio Riva

Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.


2019 ◽  
Vol 12 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Onur Yilmaz ◽  
Baris Afsar ◽  
Alberto Ortiz ◽  
Mehmet Kanbay

AbstractThe endothelium is the largest organ in the body and recent studies have shown that the endothelial glycocalyx (eGCX) plays a major role in health and disease states. The integrity of eGCX is vital for homoeostasis and disruption of its structure and function plays a major role in several pathologic conditions. An increased understanding of the numerous pathophysiological roles of eGCX may lead to the development of potential surrogate markers for endothelial injury or novel therapeutic targets. This review provides a state-of-the-art update on the structure and function of the eGCX, emphasizing the current understanding of interorgan crosstalk between the eGCX and other organs that might also contribute to the pathogenesis of kidney diseases.


2010 ◽  
Vol 74 (3) ◽  
pp. 453-476 ◽  
Author(s):  
Courtney J. Robinson ◽  
Brendan J. M. Bohannan ◽  
Vincent B. Young

SUMMARY In the past several years, we have witnessed an increased interest in understanding the structure and function of the indigenous microbiota that inhabits the human body. It is hoped that this will yield novel insight into the role of these complex microbial communities in human health and disease. What is less appreciated is that this recent activity owes a great deal to the pioneering efforts of microbial ecologists who have been studying communities in non-host-associated environments. Interactions between environmental microbiologists and human microbiota researchers have already contributed to advances in our understanding of the human microbiome. We review the work that has led to these recent advances and illustrate some of the possible future directions for continued collaboration between these groups of researchers. We discuss how the application of ecological theory to the human-associated microbiota can lead us past descriptions of community structure and toward an understanding of the functions of the human microbiota. Such an approach may lead to a shift in the prevention and treatment of human diseases that involves conservation or restoration of the normal community structure and function of the host-associated microbiota.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 82
Author(s):  
Veronika Kotrasová ◽  
Barbora Keresztesová ◽  
Gabriela Ondrovičová ◽  
Jacob A. Bauer ◽  
Henrieta Havalová ◽  
...  

The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.


2011 ◽  
Vol 286 (12) ◽  
pp. 9929-9934 ◽  
Author(s):  
Andrea L. Portbury ◽  
Monte S. Willis ◽  
Cam Patterson

Proteolysis within the cardiac sarcomere is a constantly evolving area of research. Three major pathways of proteolysis have been identified as being active within the cardiac sarcomere, namely the ubiquitin-proteasome system, autophagy, and the calpain system. The role of ubiquitin-proteasome system-mediated proteolysis in cardiovascular health and disease has been known for some time; however, it is now apparent that other proteolytic systems also aid in the stabilization of cardiac sarcomere structure and function. This minireview focuses on the individual as well as cooperative involvement of each of these three major pathways of proteolysis within the cardiac sarcomere.


2010 ◽  
Vol 88 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Hui Di Wang ◽  
Matthew T. Rätsep ◽  
Alexander Chapman ◽  
Ryan Boyd

The vascular adventitia, defined as the area between the external elastic lamina and the outermost edge of the blood vessel, is composed primarily of fibroblasts and for years was thought to be merely a passive structural support for the blood vessel. Consequently, studies pertaining to the role of the adventitia in regulating vascular function have been far outnumbered by those regarding the vascular endothelium. However, recent work has begun to reveal the dynamic properties of the adventitia. It was therefore the aim of this review to provide an overview of the existing knowledge demonstrating the role of the adventitia in regulating vessel structure and function. The main topics covered in this review include the cellular composition of the adventitia and the role of the adventitia in vascular oxidative stress, vasomotor responses, extracellular matrix protein expression, growth factor expression, and endothelin-1 (ET-1) expression. Recent evidence suggests that the adventitia is a major producer of vascular reactive oxygen species. It displays a distinct response to injury, hypoxia, and pulmonary hypertension, mediating vascular remodelling, repair, and extracellular matrix deposition. It may also play a role in regulating vascular tone. More recently, it has been reported that adventitial fibroblasts can produce ET-1 after Ang II treatment. Additionally, emerging evidence suggests that the adventitia may be a potent source of vasoactive hormones such as growth factors and ET-1, which may regulate vascular structure and function via autocrine or paracrine signalling mechanisms. Despite these findings, many important questions regarding the role of the vascular adventitia remain unanswered, suggesting the need for further research to determine its exact function in health and disease.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Sign in / Sign up

Export Citation Format

Share Document