scholarly journals A stochastic population pharmacodynamic model of QAP14 in the treatment of lung metastases of 4T1 breast cancer

2021 ◽  
Vol 30 (10) ◽  
pp. 794-805
2020 ◽  
Vol 20 (7) ◽  
pp. 790-799 ◽  
Author(s):  
Farnaz D. Moghaddam ◽  
Pejman Mortazavi ◽  
Somayeh Hamedi ◽  
Mohammad Nabiuni ◽  
Nasim H. Roodbari

Background and Purpose: Melittin, as the main ingredient of honeybee venom, that has shown anticancer properties. The present study aimed at investigating the cytotoxic impacts of melittin on 4T1 breast cancer cells. Methods: Hemolytic activity of different concentrations (0.125, 0.25, 0.5, 1, 2, 4, 8μg/ml) of melittin was assayed and then cytotoxicity of selected concentrations of melittin (2, 4, 8, 16, 32, and 64μg/ml), 2 and 4μg/ml of cisplatin and 0.513, 0.295 and 0.123μg/ml of doxorubicin was evaluated on 4T1 cells using MTT assay. We used Morphological evaluation and flow cytometric analysis was used. Real time PCR was also used to determine mRNA expression of Mfn1 and Drp1 genes. Results: All compounds showed anti-proliferative effects on the tumor cell line with different potencies. Melittin had higher cytotoxicity against 4T1 breast cancer cells (IC50= 32μg/ml-72h) and higher hemolytic activity (HD50= 1μg/ml), as compared to cisplatin and doxorubicin. Mellitin at 16 and 32μg/ml showed apoptotic effects on 4T1 cells according to the flow cytometric analysis. The Real time PCR analysis of Drp1 and Mfn1 expression in cells treated with 16μg/ml of melittin revealed an up-regulation in Drp1 and Mfn1 genes mRNA expression in comparison with control group. Treatment with 32μg/ml of melittin was also associated with a rise in mRNA expression of Drp1 and Mfn1 as compared to the control group. Conclusion: The results of this study showed that melittin has anticancer effects on 4T1 cell lines in a dose and time dependent manner and can be a good candidate for further research on breast cancer treatment.


2021 ◽  
Vol 10 (11) ◽  
pp. 2340
Author(s):  
Lucia Borriello ◽  
John Condeelis ◽  
David Entenberg ◽  
Maja H. Oktay

Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nataliia Petruk ◽  
Sanni Tuominen ◽  
Malin Åkerfelt ◽  
Jesse Mattsson ◽  
Jouko Sandholm ◽  
...  

AbstractCD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.


2021 ◽  
Vol 60 (12) ◽  
pp. 3365
Author(s):  
Chen-Wen Lu ◽  
Andrey V. Belashov ◽  
Anna A. Zhikhoreva ◽  
Irina V. Semenova ◽  
Chau-Jern Cheng ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5581
Author(s):  
Chung-Yih Wang ◽  
Chun-Yuan Chang ◽  
Chun-Yu Wang ◽  
Kaili Liu ◽  
Chia-Yun Kang ◽  
...  

Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.


ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000440 ◽  
Author(s):  
Christian Maurer ◽  
Lorraine Tulpin ◽  
Michel Moreau ◽  
Cristina Dumitrescu ◽  
Evandro de Azambuja ◽  
...  

BackgroundPatients with metastatic human epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) frequently experience brain metastases (BM). We aimed to define risk factors for the development of BM in patients with HER2+ BC and to report on their outcome.MethodsThis is a retrospective analysis of patients diagnosed with HER2+ BC between January 2000 and December 2014 at Institut Jules Bordet, Belgium. Statistical analyses were conducted with SAS V.9.4 using Kaplan-Meier method and Cox regression analyses.ResultsA total of 483 patients were included of whom 108 (22.4%) developed metastases and 52 (10.8%) BM. Among 96 metastatic patients without BM at diagnosis, 40 (41.7%) developed BM in the course of their disease. In multivariate analysis, risk factors for the development of BM were age ≤40 years (HR 2.10, 95 % CI 1.02 to 4.36), tumour size >2 cm (HR 4.94, 95% CI 1.69 to 14.47), nodal involvement (HR 3.48, 95% CI 1.47 to 8.25), absence or late start (≥6 months after initial diagnosis) of adjuvant anti-HER2 treatment (HR 3.79, 95% CI 1.52 to 9.43 or HR 2.65, 95% CI 1.03 to 6.82) and the development of lung metastases as first site of relapse (HR 6.97, 95% CI 3.41 to 14.24). Twenty-two patients with HER2+ BC and BM sent to our institute for further treatment were included in the outcome analysis. Asymptomatic patients at the time of BM diagnosis showed a better overall survival than symptomatic patients (HR 0.49, 95% CI 0.25 to 0.94).ConclusionA considerable number of patients with metastatic HER2+ BC will develop BM. Screening of patients with risk factors for BM might lead to early detection and better outcome. However, randomised controlled trials examining the use of MRI as a screening method for BM in patients with metastatic BC are warranted before such an approach can be recommended.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sarah Kraus ◽  
Raz Khandadash ◽  
Raphael Hof ◽  
Abraham Nyska ◽  
Ekaterina Sigalov ◽  
...  

Sarah Nanoparticles (SaNPs) are unique multicore iron oxide-based nanoparticles, developed for the treatment of advanced cancer, following standard care, through the selective delivery of thermal energy to malignant cells upon exposure to an alternating magnetic field. For their therapeutic effect, SaNPs need to accumulate in the tumor. Since the potential accumulation and associated toxicity in normal tissues are an important risk consideration, biodistribution and toxicity were assessed in naïve BALB/c mice. Therapeutic efficacy and the effect on survival were investigated in the 4T1 murine model of metastatic breast cancer. Toxicity evaluation at various timepoints did not reveal any abnormal clinical signs, evidence of alterations in organ function, nor histopathologic adverse target organ toxicity, even after a follow up period of 25 weeks, confirming the safety of SaNP use. The biodistribution evaluation, following SaNP administration, indicated that SaNPs accumulate mainly in the liver and spleen. A comprehensive pharmacokinetics evaluation, demonstrated that the total percentage of SaNPs that accumulated in the blood and vital organs was ~78%, 46%, and 36% after 4, 13, and 25 weeks, respectively, suggesting a time-dependent clearance from the body. Efficacy studies in mice bearing 4T1 metastatic tumors revealed a 49.6% and 70% reduction in the number of lung metastases and their relative size, respectively, in treated vs. control mice, accompanied by a decrease in tumor cell viability in response to treatment. Moreover, SaNP treatment followed by alternating magnetic field exposure significantly improved the survival rate of treated mice compared to the controls. The median survival time was 29 ± 3.8 days in the treated group vs. 21.6 ± 4.9 days in the control, p-value 0.029. These assessments open new avenues for generating SaNPs and alternating magnetic field application as a potential novel therapeutic modality for metastatic cancer patients.


Sign in / Sign up

Export Citation Format

Share Document