The Effects of Cross-Linking and Strain on the Glass Transition Temperature of a Polymer Network

1980 ◽  
Vol 53 (4) ◽  
pp. 982-987 ◽  
Author(s):  
M. A. Sharaf ◽  
J. E. Mark

Abstract The glass transition temperature Tg of an elastomer is of great importance with regard to its utilization since at this temperature and below, the material can no longer exhibit rubberlike behavior. In the present study, networks were prepared from atactic poly(vinyl acetate) and poly(isobutyl methacrylate), both types of networks being inherently non-crystallizable and therefore immune from complications associated with strain-induced crystallization. The values of Tg were obtained by dilatometry, differential scanning Calorimetry, the measurement of viscoelastic losses, and irreversible thermal shrinkage. For both types of networks, Tg was found to increase with increase in degree of crosslinking and with increase in elongation. These results suggest that the most important effect of crosslinking and network elongation is a decrease in the mobility or entropy of the network chains.

1979 ◽  
Vol 52 (1) ◽  
pp. 207-212 ◽  
Author(s):  
M. Bruzzone ◽  
E. Sorta

Abstract In a great number of applications an ideal elastomer should satisfy, to a certain extent, both of the following requirements: (1) nearly instantaneous crystallization upon application of strain (strain induced crystallization) and (2) slow or no crystallization when cooled at the temperature of maximum crystallization rate (cold induced crystallization). A noteworthy case of (2) is elastomer crystallization in a strained state. The connection between the points (1) and (2) has not been clearly understood up to now, but it is known that some crystallizable elastomers fulfil the requirements of both (1) and (2) better than others. From an experimental point of view, cold induced crystallization kinetics are substantially easier to measure than those of very fast strain induced crystallization. The phenomenon of cold induced crystallization in natural rubber, NR, has been known since the very beginning of elastomer technology and the tendency of natural rubber to crystallize by cooling has been overcome by crosslinking it with sulphur (vulcanization) without impairing its ability to crystallize by stretching (Goodyear, 1836). The synthesis of cis-polyisoprenes (IR) and cis-polybutadiene (BR) of different microstructural purity (different cis content) gave the possibility of changing the crystallization rate. It has also been reported that the very fast cold crystallization of trans-polypentenamer (TPA) could be reduced by lowering the trans content. The same fact had been observed earlier for trans-polychloroprene. There is a general agreement in postulating that the reduction of the crystallization rate, obtained either by cross-linking or by chain regularity reduction, can be linked with the lowering of the melting point. In both cases the low level of structural defects introduced in the chains does not affect the glass transition temperature in such a way as to vary the crystallization rate. The aim of this paper is to emphasize the importance of the variations of the glass transition temperature and melting point on the elastomeric cold crystallization rate and the way these may be used in planning new elastomer structures.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2736
Author(s):  
Anna Sobczyk-Guzenda ◽  
Paulina Boniecka ◽  
Anna Laska-Lesniewicz ◽  
Marcin Makowka ◽  
Hieronim Szymanowski

Acrylate polymer-based bone cements constitute the most popular bonding agents used in regenerative surgery. Due to their inferior biocompatibility, however, these materials are often enriched with ceramic additives including hydroxyapatite (HAp). The aim of this paper was to perform a comparative study of the acrylate cements filled with different content (3–21%) of nano- and microscale hydroxyapatite. The work concerns a comparison of times and temperatures of the cross-linking reaction, as well as morphology, glass transition temperature, and principal mechanical properties of the resulting composites. Before being used as a filler, both HAp forms were subjected to an in-depth characterization of their morphology, specific surface area, pore size distribution, and wettability as well as chemical composition and structure. For that purpose, such analytical techniques as scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, tensiometry, Brunauer–Emmett–Teller surface area analysis, differential scanning calorimetry, Shore D hardness test, and Charpy impact test were used. The results indicated a drop of cross-linking temperature and an extension of setting time with the addition of µHAp. The µHAp-filled acrylate composites were characterized by a globular surface morphology, higher glass transition temperature, and lower hardness and impact strength compared to nHAp-filled materials. This relationship was evident at higher nHAp concentrations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


1997 ◽  
Vol 476 ◽  
Author(s):  
P. H. Townsend ◽  
S. J. Martin ◽  
J. Godschalx ◽  
D. R. Romer ◽  
D. W. Smith ◽  
...  

AbstractA novel polymer has been developed for use as a thin film dielectric in the interconnect structure of high density integrated circuits. The coating is applied to the substrate as an oligomeric solution, SiLK*, using conventional spin coating equipment and produces highly uniform films after curing at 400 °C to 450 °C. The oligomeric solution, with a viscosity of ca. 30 cPs, is readily handled on standard thin film coating equipment. Polymerization does not require a catalyst. There is no water evolved during the polymerization. The resulting polymer network is an aromatic hydrocarbon with an isotropie structure and contains no fluorine.The properties of the cured films are designed to permit integration with current ILD processes. In particular, the rate of weight-loss during isothermal exposures at 450 °C is ca. 0.7 wt.%/hour. The dielectric constant of cured SiLK has been measured at 2.65. The refractive index in both the in-plane and out-of-plane directions is 1.63. The flow characteristics of SiLK lead to broad topographic planarization and permit the filling of gaps at least as narrow as 0.1 μm. The glass transition temperature for the fully cured film is greater than 490 °C. The coefficient of thermal expansivity is 66 ppm/°C below the glass transition temperature. The stress in fully cured films on Si wafers is ca. 60 MPa at room temperature. The fracture toughness measured on thin films is 0.62 MPa m ½. Thin coatings absorb less than 0.25 wt.% water when exposed to 80% relative humidity at room temperature.


1991 ◽  
Vol 239 ◽  
Author(s):  
P. H. Townsend ◽  
B. S. Huber ◽  
D. S. Wang

ABSTRACTWafer bending measurements have been used to study the glass transition temperature, Tg, of thin coatings of polystyrene and polycarbonate on Si wafers. The observed values of Tg agree with DSC and TMA measurements on bulk samples. The evolution of the substrate curvature has been used to examine the behavior of Tg in thin epoxy films and coatings derived from divinylsiloxane bisbenzocyclobutene, mixed stereo and positional isomers of 1, 3-bis(2-bicyclo[4.2.0]octa-1, 3, 5-trien-3-ylethenyl)-1, 1, 3, 3-tetramethyl disitoxane (CAS 117732–87–3). The dependence of the Tg of the epoxide coatings is studied as a function of the cross-linking. The evolution of the Tg in the benzocyclobutene coating is found to be a monotonie function of the level of conversion of the polymer network.


Sign in / Sign up

Export Citation Format

Share Document