Hydrofluorocarbon High-Temperature Integral Fuel Tank Sealants

1966 ◽  
Vol 39 (4) ◽  
pp. 1200-1214
Author(s):  
W. F. Anspach

Abstract Supersonic aircraft in the Mach 3 range have increased temperature requirements for many materials of construction. One of the most critical problem areas is the integral fuel tank where state-of-the-art elastomeric sealants no longer meet those requirements. New sealants resistant to hydrocarbon fuels at temperatures in excess of 500° F are urgently needed. A high temperature integral fuel tank filleting sealant has been developed based on a mixture of high and low molecular weight hydrofluoroearbon polymers. This sealant has a solids content of 85 per cent and cures at modest temperatures. It is a one component system stable for several weeks at ambient temperatures and for longer periods if refrigerated. The sealant exhibits good room temperature and high temperature mechanical properties both before and after aging in hydrocarbon fuel and fuel vapor at temperatures up to 500° F. A typical formulation showed an increase in tensile strength and better than 50 per cent retention of elongation after 1000 continuous hours exposure to fuel vapor at 500° F. Adhesion to metal substrates is good and samples have resisted rupture and loss of adhesion when pressurized at 500° F for 1000 hours. This is only an interim solution to the critical fuel tank sealant problem in Mach 3 aircraft. Research is continuing to improve its useable life and to eliminate a possibly serious corrosion problem with titanium substrates. It must be emphasized, however, that sealants based on hydrofluorocarbons, fluorosilicones, and other available elastomers can at best provide interim solutions to the high temperature sealant problems and that new base polymers, such as the triazine and polyether elastomers currently being developed by the Air Force Materials Laboratory, are needed to provide sealants which completely meet requirements.

1972 ◽  
Vol 39 (3) ◽  
pp. 395-408 ◽  
Author(s):  
A. T. Andrews ◽  
G. C. Cheeseman

SummaryStorage of aseptically packed ultra-high-temperature (UHT) milk has been shown to be accompanied by pronounced changes in the molecular weight distribution of the pH 4·6 insoluble casein. These changes were both time-dependent and temperature-dependent, proceeding much more rapidly at 37 °C than at 30 °C, but even at 4 °C the changes were considerable. The proportions of high molecular weight material present before and after storage have been studied by gel filtration in dissociating solvents using Sephadex G-200. Measurements have also been made on casein material isolated from in-bottle sterilized milks and canned evaporated milk for comparison. The results of gel filtration have been compared with sedimentation coefficients recorded by ultracentrifugation and with changes in the content of amino groups titratable with trinitrobenzene-sulphonic acid. The results are compatible with the suggestion that the Maillard reaction occurred at ambient temperatures, and over a period of several months led to browning and sediment formation due to covalent cross-linking of polypeptide chains. The implications of this are discussed with reference to spoilage of UHT milk on storage and the phenomenon of gelation.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
W. M. Sherman ◽  
K. M. Vedula

The strength to weight ratio and oxidation resistance of NiAl make this ordered intermetallic, with some modifications, an attractive candidate to compete with many superalloys for high temperature applications. Recent studies have shown that the inherent brittleness of many polycrystalline intermetallics can be overcome by micro and macroalloying. It has also been found that the high temperature mechanical properties of NiAl can be enhanced through the addition of Nb by powder metallurgical techniques forming a dispersed second phase through interdiffusion in a polycrystalline matrix. A drop in the flow stress is observed however in a NiAl-2 at.% Nb alloy after 0.2 % strain during constant strain rate hot compression testing at 1025°C. The object of this investigation was to identify the second phase and to determine the cause of the flow stress drop.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1973 ◽  
Vol 22 (1) ◽  

Abstract HASTELLOY alloy S is a nickel-base high-temperature alloy having excellent thermal stability, good high-temperature mechanical properties and excellent resistance to oxidation up to 2000 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-184. Producer or source: Stellite Division, Cabot Corporation.


2006 ◽  
Vol 23 (1) ◽  
pp. 29-37 ◽  
Author(s):  
G.D. Janaki Ram ◽  
A. Venugopal Reddy ◽  
K. Prasad Rao ◽  
G. Madhusudhan Reddy

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 384
Author(s):  
Andong Du ◽  
Anders E. W. Jarfors ◽  
Jinchuan Zheng ◽  
Kaikun Wang ◽  
Gegang Yu

The effect of lanthanum (La)+cerium (Ce) addition on the high-temperature strength of an aluminum (Al)–silicon (Si)–copper (Cu)–magnesium (Mg)–iron (Fe)–manganese (Mn) alloy was investigated. A great number of plate-like intermetallics, Al11(Ce, La)3- and blocky α-Al15(Fe, Mn)3Si2-precipitates, were observed. The results showed that the high-temperature mechanical properties depended strongly on the amount and morphology of the intermetallic phases formed. The precipitated tiny Al11(Ce, La)3 and α-Al15(Fe, Mn)3Si2 both contributed to the high-temperature mechanical properties, especially at 300 °C and 400 °C. The formation of coarse plate-like Al11(Ce, La)3, at the highest (Ce-La) additions, reduced the mechanical properties at (≤300) ℃ and improved the properties at 400 ℃. Analysis of the strengthening mechanisms revealed that the load-bearing mechanism was the main contributing mechanism with no contribution from thermal-expansion mismatch effects. Strain hardening had a minor contribution to the tensile strength at high-temperature.


2006 ◽  
Vol 510-511 ◽  
pp. 358-361
Author(s):  
Won Yong Kim ◽  
Han Sol Kim ◽  
In Dong Yeo ◽  
Mok Soon Kim

We report on advanced Ni3Al based high temperature structural alloys with refractory alloying elements such as Zr and Mo to be apllied in the fields of die-casting and high temperature press forming as die materials. The duplex microstructure consisting of L12 structured Ni3Al phase and Ni5Zr intermetallic dispersoids was observed to display the microstructural feature for the present alloys investigated. Depending on alloying elements, the volume fraction of 2nd phase was measured to be different, indicating a difference in solid solubility of alloying elements in the matrix γ’ phase. Lattice parameter of matrix phase increased with increasing content of alloying elements. In the higher temperature region more than 973K, the present alloys appeared to show their higher strength compared to those obtained in conventional superalloys. On the basis of experimental results obtained, it is suggested that refractory alloying elements have an effective role to improve the high temperature strength in terms of enhanced thermal stability and solid solution hardening.


Sign in / Sign up

Export Citation Format

Share Document