DERIVATIZATION OF SOYBEAN OIL TO ENHANCE PERFORMANCE AS A PROCESSING OIL IN SBR-BASED RUBBER COMPOUNDS

Author(s):  
Olena Shafranska ◽  
Andrey Chernykh ◽  
Bret J. Chisholm ◽  
Ihor Tarnavchyk ◽  
Dean C. Webster

ABSTRACT Although soybean oil (SBO) has been used as a bio-based processing oil (PO) for rubber compounds, direct replacement of a conventional petroleum-based PO with SBO often results in a reduction of some important properties. As a result, it was of interest to investigate two higher molecular weight SBO-derived materials as POs, namely, sucrose octasoyate (SS) and poly(2-vinyloxyethyl)soyate (P2VOES). When these compounds were used in carbon black (CB)-filled SBR, mechanical properties were significantly improved. This result was mainly attributed to higher crosslink densities resulting from their higher degree of unsaturation per molecule as compared with SBO. Higher unsaturation per molecule increases the probability that the PO will be incorporated into the crosslinked network as elastically effective crosslinks as opposed to dangling chain ends. With regard to tire tread performance, both SS and P2VOES-based vulcanizates showed a lower predicted rolling resistance than the SBO-based control, and the P2VOES vulcanizate showed a better balance between rolling resistance and wet traction. Vulcanizates derived from SS and P2VOES showed a small tangent delta peak between −13 and 35 °C that might be associated with relatively highly crosslinked domains rich in SS or P2VOES.

2019 ◽  
Vol 51 (7-8) ◽  
pp. 712-726 ◽  
Author(s):  
Cléverson Fernandes Senra Gabriel ◽  
Alessandra de Alencar Padua Gabino ◽  
Ana Maria Furtado de Sousa ◽  
Cristina Russi Guimarães Furtado ◽  
Regina Célia Reis Nunes

Carbon black and high performance silica have been widely employed as binary system filler in tire tread formulations. This study evaluated the total and partial substitution of silica by metakaolin (MK) on the properties of tread rubber composites. Dynamic mechanical thermal analysis and abrasion tests were conducted as typical assessments of tire tread performance: rolling resistance (fuel consumption), wet traction (safety), and abrasion (durability). Further the energy spent by the equipment during the processing of formulations was also analyzed, as well as rheological and mechanical properties. A significant reduction of rolling resistance was obtained with 75% and 100% of silica substitution by MK, which could lead to lower heat buildup in tire tread applications, without showing negative effects on wet traction, although abrasion showed undesired results. The substitution of silica by MK also lowered energy demanded for processing. No major changes were observed in vulcanization parameters and mechanical properties, which is interesting considering the fact that MK is nonreinforce filler.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2018 ◽  
Vol 157 ◽  
pp. 07009 ◽  
Author(s):  
Mariana Pajtášová ◽  
Zuzana Mičicová ◽  
Darina Ondrušová ◽  
Slavomíra Božeková ◽  
Róbert Janík ◽  
...  

The presented paper deals with the use of waste materials as ecological fillers into rubber matrix. Waste materials were used as partial replacement of the commercial filler – carbon black, designated as N339. These prepared rubber compounds were characterized on the basis of the rheology and vulcanization characteristics – minimum torque (ML), maximum torque (MH), optimum time of vulcanization (t(c90)), processing safety of compound (ts), rate coefficient of vulcanization (Rv). In the case of the prepared vulcanizates, physical-mechanical properties (tensile strength, tensibility and hardness) and dynamic-mechanical properties (storage modulus, loss modulus, loss angle tan δ) were investigated. Using the dependency of loss angle on temperature, the selected properties for tyre tread vulcanizates were evaluated, including traction on snow and ice, traction on the wet surface and rolling resistance.


2013 ◽  
Vol 781-784 ◽  
pp. 475-478
Author(s):  
Watcharin Rassamee ◽  
Woothichai Thaijaroen ◽  
Thirawudh Pongprayoon

Natural rubber compound using different silicas, including unmodified silica, admicellar-modified silica and silica with silane coupling agent, were studied. The properties including cure characteristics, mechanical properties and dynamic properties were examined with the comparison of three compounds. The results show that cure characteristics of admicellar silica/rubber compound (Ad-Si/R) was shorter than those of unmodified silica/rubber compound (Un-Si/R) and silane coupling silica/rubber compound (Sil-Si/R). Mechanical properties of Ad-Si/R and Sil-Si/R were better than those of Un-Si/R. In addition, wet grip and rolling resistance analyzed from tan δ (5 Hz) at 0°C and 60°C, respectively, by DMA were found that the wet grip of Ad-Si/R was the best, whereas the rolling resistance of Sil-Si/R was the best, in the comparison.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
S. Sattayanurak ◽  
J. W. M. Noordermeer ◽  
K. Sahakaro ◽  
W. Kaewsakul ◽  
W. K. Dierkes ◽  
...  

Modern fuel-saving tire treads are commonly reinforced by silica due to the fact that this leads to lower rolling resistance and higher wet grip compared to carbon black-filled alternatives. The introduction of secondary fillers into the silica-reinforced tread compounds, often named hybrid fillers, may have the potential to improve tire performance further. In the present work, two secondary fillers organoclay nanofiller and N134 carbon black were added to silica-based natural rubber compounds at a proportion of silica/secondary filler of 45/10 phr. The compounds were prepared with variable mixing temperatures based on the mixing procedure commonly in use for silica-filled NR systems. The results of Mooney viscosity, Payne effect, cure behavior, and mechanical properties imply that the silica hydrophobation and coupling reaction of the silane coupling agent with silica and elastomer are significantly influenced by organoclay due to an effect of its modifier: an organic ammonium derivative. This has an effect on scorch safety and cure rate. The compounds where carbon black was added as a secondary filler do not show this behavior. They give inferior filler dispersion compared to the pure silica-filled compound, attributed to an inappropriate high mixing temperature and the high specific surface area of the carbon black used. The dynamic properties indicate that there is a potential to improve wet traction and rolling resistance of a tire tread when using organoclay as secondary filler, while the combination of carbon black in silica-filled NR does not change these properties.


2016 ◽  
Vol 89 (4) ◽  
pp. 559-572 ◽  
Author(s):  
S. Maghami ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT Unlike carbon black, silica is polar and naturally not compatible with nonpolar hydrocarbon elastomers. This lack of interaction or compatibility between the filler and the elastomer typically causes lower properties compared with carbon black–filled compounds. A common approach to deal with this problem is to use silane coupling agents in the system to link the silica and the polymer chains via covalent bonds. An alternative is the introduction of polar functional groups or chemically reactive groups into the elastomer chains, which can improve the compatibility of elastomers with fillers such as silica. In this article, the effect of three functionalized SBRs, one backbone modified with carboxylate moieties, one modified with dithiol groups, and one partially Si-coupled, on the dynamic and mechanical properties of a silica-reinforced tire tread compound will be discussed and compared with a reference compound that contains unmodified s-SBR as the main polymer. The results show the significant potential of two of these modified SBRs to reduce the rolling resistance of tire treads made thereof, while no major change in wet grip occurs. Zinc oxide is known as the best activator for sulfur vulcanization. Zn ions combine with accelerators to form an active complex that catalyzes the vulcanization process. However, in silica-filled compounds, ZnO may interfere with the silanization process because of its alkaline nature, and it may compete with the silanes in reacting with the acidic –OH groups on the surface of silica particles. When functionalized SBRs with higher polarity are used in silica compounds, ZnO may interact with these moieties as well. To investigate the effect of ZnO on the properties of the silica-reinforced tread compound, a series of compounds have been prepared, in which the addition of ZnO in a later stage was compared with conventional mixing. The dynamic and mechanical properties of the final compounds are discussed.


2011 ◽  
Vol 13 ◽  
pp. 27-32 ◽  
Author(s):  
Zdenĕk Jonšta ◽  
Pavel Koštial ◽  
Ivan Ružiak ◽  
Peter Jonšta ◽  
J. Jurčiová ◽  
...  

In the paper we present measurements of transport physical parameters such as thermal conductivity, diffusivity and specific heat capacity and dc electrical conductivity as well as the mechanical values E*, tg δ for rubber compounds filled by different ratio of silica - carbon black fillers. From presented results it is possible to see that proper filler concentration (rubber blend - silica - carbon black) rising all thermal parameters as well as mechanical properties represented by complex Young’s modulus and so, maintains the good mechanical parameters of the blend and finally it also lowers the electrical resistance. All trends are favourable for the improvement of useful rubber blends properties.


2020 ◽  
Vol 1428 ◽  
pp. 012020
Author(s):  
N. Bukit ◽  
E.M. Ginting ◽  
E. Sidebang ◽  
E. Frida ◽  
B.F. Bukit

1996 ◽  
Vol 69 (1) ◽  
pp. 15-47 ◽  
Author(s):  
J. D. Ulmer

Abstract The strain dependencies of dynamic mechanical properties of carbon black-filled rubber compounds have been modeled by Kraus. Evaluation of the Kraus model with carbon black loadings up to 110 phr shows that it provides a fairly good overall description of elastic modulus, G′, as a function of strain, γ. The model description of G′ strain dependence improves with decreased carbon black loading, and is very good with carbon black loadings of 50 phr and less. The model description of viscous modulus strain dependence, G″(γ), is less successful than the G′(γ) description. Several empirical modifications of the viscous modulus model are examined. The most improved model is a very good approximation to viscous modulus over a wide experimental strain-range. Its utility, and that of the Kraus G′(γ) model, are illustrated through calculation of simple shear dynamic properties from torsion property measurements on a solid cylinder, where the strain amplitude varies across the specimen radius. The models allow transformation of the apparent moduli, reported as functions of strain amplitude at the cylinder's outer edge, to their true counterparts, G′(γ) and G″(γ), as functions of uniform strain amplitude. Although the G′(γ) and modified G″(γ) models apply to a wide range of experimental strains, some uncertainties associated with each model's accuracy remain, and there are inconsistencies in the relation of one model to the other. Reservations associated with the models might be resolved through refined treatments of the test specimen geometries.


Sign in / Sign up

Export Citation Format

Share Document