A Review on Measurement of Concentration of Heavy Metals in the Muscles of Mugil cephalus

2021 ◽  
Vol 43 (5) ◽  
pp. 611-611
Author(s):  
Fehmeeda Afzal Fehmeeda Afzal ◽  
Sonia Tariq Sonia Tariq ◽  
Ashraf Nadeem Ashraf Nadeem ◽  
Samiullah Samiullah ◽  
Jafar Iqbal Jafar Iqbal ◽  
...  

Heavy metals are an important class of compounds that is increasing in environment due to the anthropogenic activities. They are extremely toxic to human beings and animals. Many of them enter the water through industrial waste and effect the aquatic life. Fishes, for example, are an important source of food and they get effected by heavy metals when they ingest the infected sediments, mud and water. Heavy metals enter the food chain when infected fishes are consumed and effect humans as well. We highlight the recent (10-15 years) published work on measuring the levels of heavy metal in Mugilcephalus (Flathead mullet) fish. Out of all the methods compared and discussed in this paper, Atomic absorption spectroscopy was found to be the most preferred method and most commonly used by researchers because of its ease and cost. The most commonly used unit for metal detection in muscles was g/g (dry weight).The results also summarize advantages and drawbacks of methods used to digest muscles of the said species and heavy metal measurement. In selected studies, the levels of metals were also compared with the safe limits set by WHO, FAO and USEPA. This gives a lot of information about the edible fitness of the M.cephalus.

2019 ◽  
Vol 9 (24) ◽  
pp. 191203 ◽  
Author(s):  
Meena Kapahi ◽  
Sarita Sachdeva

Background. Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. Objectives. The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. Methods. Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. Discussion. Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. Conclusions. Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. Competing interests. The authors declare no competing financial interests.


2021 ◽  
Vol 7 (1) ◽  
pp. 07-17
Author(s):  
T V Ramchandra ◽  
N R Narayan

Purpose of the study: Heavy metals in food (vegetables, etc.) are harmful to humans due to their non-biodegradable nature, long biological half-lives, and their potential to accumulate in different body parts. Prolonged consumption of such heavy metal contaminated vegetables through foodstuffs may lead to chronic accumulation of heavy metals in human beings' kidneys and liver, disrupting numerous biochemical processes, leading to cardiovascular, neural, kidney and bone diseases. Method: The study on heavy metal concentrations in vegetables grown in the command areas of Varthur lake, Bangalore. The collected vegetable samples were analyzed using ICP-OES (Inductively Coupled Plasma-Optical Emission Spectroscopy) technique to assess the level of heavy metal in acid digested samples. Main Findings: The study has shown a significant accumulation of heavy metals in vegetables that correlated well with its concentrations in soil and lake water. The prolonged irrigation of vegetables using contaminated lake water has led to soil contamination, which ultimately resulted in contamination of vegetables due to the uptake and accumulation of heavy metals in edible portions of vegetables. Application of the Study: Urgent attention is needed to devise and implement appropriate means of regular monitoring of the toxic heavy metals from domestic sewage and industrial effluent and provide proper advice and support for the safe and productive use of wastewater for irrigation purposes to prevent excessive buildup of heavy metals in the food chain.


Jurnal Segara ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Fitri Budiyanto ◽  
Lestari

The potency and utilization of Lampung Bay has been recognized for their socio-economical and ecological values. However, heavy use of this Bay may alter the abundance of hazardous chemical like heavy metals. The aims of this study were to determine the concentration of Cd, Cu, Pb and Zn in the sediment and to assess Lampung Bay water condition. The observation of heavy metal content in sediment of Lampung Bay was conducted at 13 stations in March 2008. Analysis of heavy metals in sediment was conducted using three kinds of acid: HNO3, HCl and H2O2 while measurement was carried out by Atomic Absorption Spectrophotometer. The result indicated a variation of heavy metal concentration in sediment and that concentrations of Cd, Cu, Pb and Zn in sediment were 0.08 mg/kg dry weight, 22.99 mg/kg dry weight, 24.75 mg/kg dry weight and 118.48 mg/kg dry weight, respectively. Factors influenced heavy metal concentration in sediment in this study including the distance between sampling location and anthropogenic activities and the sediment fraction  SQG-Q index indicated that 7 stations have SQG-Q ≤ 0.1 whereas other 6 stations have 0.1≤ SQG-Q <1, meaning that more than half sampling stations are in uncontaminated state.  


2016 ◽  
Vol 11 (1) ◽  
pp. 325-332 ◽  
Author(s):  
Pammi Singh ◽  
Mithra Dey ◽  
Sunkam Narayana

Considering the significance of heavy metal pollution in aquatic system bioaccumulation of heavy metals in two species of tadpoles namely Clinotarsus alticola and Leptobrachium smithicollected from tea gardens of Barak valley, Assam was studied. Aquatic life is affected by heavy metal pollutants present in water as well as in sediment. The result of the study revealed that the concentration of iron, chromium, cadmium and lead in water samples was higher than the permissible limit of 0.3, 0.05, 0.003, 0.01 mg/L respectively but that of copper and zinc concentration was within the maximum permissible limit of 2 mg/L and 3 mg/L (WHO, 2005). The accumulation pattern of different heavy metals in different organs viz., intestine, liver and tail was studied.Overall the metal burden in different organs of Clinotarsus alticola and Leptobrachium smithi was in the order of liver>tail>intestine. Liver had highest accumulation of metals while intestine accumulated the least.Iron (Fe) was highly and zinc (Zn) was the least accumulated metal in both the tadpoles. The accumulation of heavy metals might be due to tea plantation influx water, domestic and associated anthropogenic activities.


2021 ◽  
Vol 13 (5) ◽  
pp. 2574
Author(s):  
Beatriz E. Guerra Sierra ◽  
Jaider Muñoz Guerrero ◽  
Serge Sokolski

The geomorphological characteristics of the materials inherent in tropical soils, in addition to the excessive use of fertilizers and pesticides, industrial waste and residues, and novel pollutants derived from emerging new technologies such as nanomaterials, affect the functionality and resilience of the soil-microorganism-plant ecosystem; impacting phytoremediation processes and increasing the risk of heavy metal transfer into the food chain. The aim of this review is to provide a general overview of phytoremediation in tropical soils, placing special emphasis on the factors that affect this process, such as nanoagrochemicals, and highlighting the value of biodiversity among plant species that have the potential to grow and develop in soils impacted by heavy metals, as a useful resource upon which to base further research.


2020 ◽  
Vol 12 (2) ◽  
pp. 114-122
Author(s):  
Wahyu Irawati ◽  
Aaron Hasthosaputro ◽  
Lucia Kusumawati

The increasing industrial activity in Indonesia, that is not equipped with appropriate waste treatment, has caused an increase of heavy metal contaminants in water bodies. Heavy metals contamination such as copper (Cu), mercury (Hg), cadmium (Cd), and lead (Pb) contamination in water bodies have endangered aquatic life and public health. For this reason, it is urgently important to lower down the concentration of heavy metal pollutants in the water bodies surrounding industrial areas. Compared to chemical remediation, bioremediation of heavy metal by using indigenous bacteria is more effective and economical, since it can be applied in situ directly and be used repeatedly. Acinetobacter sp. IrC2, used in this study, is Indonesian indigenous bacteria isolated from the industrial waste treatment facility in Rungkut, Surabaya. This study aims, firstly, to investigate the heavy metal multiresistance of Acinetobacter sp. IrC2 against mercury, cadmium, and lead. Secondly, this study intends to examine its bioaccumulation capacity for single and heavy metal alloys. The heavy metal multiresistance test was carried out by measuring the minimum heavy metal concentrations that inhibit bacterial growth (Minimum Inhibitory Concentration/MIC). The bioaccumulation capacity was measured using an atomic absorption spectrophotometer (AAS).  It is shown that Acinetobacter sp. IrC2 has high multiresistance to mercury, cadmium, and lead with MIC values of 12 mM, 8 mM, and 18 mM, respectively. Furthermore,  it is also resistant to  heavy metal mixture of 4.5 mM.  The mechanism of bacterial resistance in response to heavy metal toxicity, in general, is by accumulating heavy metals in the cells. The highest amount of accumulated heavy metals identified, from bacteria grown in the medium contains a mixture of heavy metals, were 0.023 mg, 0.084 mg, 0.684 mg, and 1.476 mg per gram of cell dry weight for copper, mercury, cadmium and lead respectively.  In conclusion, Acinetobacter sp. IrC2 is a promising heavy metal bioremediation agent due to its heavy metal multiresistance and accumulator characteristics.  Key words: Acinetobacter sp. IrC2; cadmium; copper; lead; merkuri


Author(s):  
Agustina Onyebuchi Ijeomah ◽  
Rebecca Ngoholve Vesuwe ◽  
Bitrus Pam

Vegetables growing in mining areas have become a serious food safety concern because of the high levels of heavy metals always associated with mining. In this study, water used for irrigation, soil, cabbage, green pepper and green beans grown in tin mine areas of Heipang District, Barkin-Ladi LGA of Plateau State were analyzed for lead, cadmium and zinc, using Atomic Absorption Spectrophotometer (AAS). The concentrations of the heavy metals in water, soil, vegetables were all in the order Pb, >> Cd > Zn. In the vegetables, the order was: Pb → cabbage > green beans > green pepper; Cd → green beans > cabbage > green pepper; Zn → cabbage > green pepper = green beans. The transfer factors for all the metals (heavy metal in plant / heavy metal in soil) ranged from 0.95 to 1.48. There were high levels of Pb and Cd in all the vegetables, which may be attributed to the metals in the water used for irrigation. Whilst the concentration of Zn in all the samples were lower than recommended limits, the levels of Pb and Cd in the water, soil and vegetables were higher than the WHO/FEPA standard recommended limits reported for vegetables. The Cd concentrations of the vegetables also exceeded the tolerance thresholds for animals and human beings and therefore consumption of vegetable from the area would endanger the health of the population.


2011 ◽  
Vol 138-139 ◽  
pp. 1149-1155 ◽  
Author(s):  
Yi Dong Guan ◽  
Ye Hong Du ◽  
Zhen Dong Li ◽  
An Cheng Luo

This paper reports the concentration of heavy metals (Cr, Cu, Zn, Cd and Pb) in the soils and rices surrounding the abandoned rural waste dumping sites in Ningbo. Igeo (geoaccumulation index) was calculated to assess the contamination degree of heavy metals in soils. The mean contents of Cr, Cu, Cd, Zn and Pb of soils were 33.3, 24.1, 1.5, 118.9 and 45.6 mg/(kg DW) (dry weight), respectively. All of them were much higher than that of the reference value (i.e. CK), but there were no coherent trend of the metal contents within 1-120m distance from the dumping site. Igeo of heavy metals reveals the order of Cd>Cu>Cr>Pb>Zn, and the contamination assessment of soils using Igeo indicate the moderate Cd pollution, while the soils were unpolluted-moderately overall by Cr, Cu, Zn as well as Pb. The heavy metal contents in root, stem & leaf and rice grains were all remarkable higher than that of the CK at 20-120 m distances, and the heavy metal contents in root were evidently much higher than other plant parts, while those in rice grain were lowest, indicating the great bioaccumulation trend of heavy metals. Although the metal contents in the rice grain were within the legislation limit, its bioaccumulation trend of heavy metals was remarkable, whose contents were 4.38-fold for Cr, 1.76-fold for Cu, 1.28-fold for Zn, 2.67-fold for Cd and 3.03-fold for Pb higher than that of reference value, respectively. Finally, we proposed a decentralized in-situ restoration approach for the dumping sites.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


Author(s):  
Bronius Jaskelevičius ◽  
Vaida Lynikienė

As a result of global and intense production the waste disposal problems become more and more urgent. Waste processing, utilization and recycling is to a certain extent limited by many economic, organisational and technological factors, and this inevitably encourages waste disposal in landfills. Physical, chemical and biological interactions in landfill cell result in formation of landfill gas and harmful leachate. Because of lack of control, together with usual communal waste, industrial waste was also dumped to landfills, therefore gas and leachate produced include large amounts of toxic compounds. Once hazardous waste materials occured in landfills, later they vastly expanded the whole spectrum of toxic materials and compounds. In the landfill environment chemical properties of surface and ground water and concentration of separate components are governed by seepage of leachate and industrial solutants into soil and ground layers and their transport by subsurface waters. Influence on the environment exerted by heavy metals contained in the leachate of Lapes Landfill is discussed in this paper. Properties of industrial waste material influenced order of the main pollutants: the most important elements in this case are Cu, Ni, Zn, Pb, Mn, Cr and other ions, the sulphides of these metals and other toxic compounds. The First Landfill field is more polluted with heavy metal polutants than the Third field. In all the samples iron concentration is the greatest exceeding even 200 times the admissible value allowed (Norm HN 24:2003). Sources (springs) S11 and S17 are least contaminated with heavy metals. The greatest groundwater pollution was found in monitoring bore G13s. The leachate processed in purification devices is released to the Third stream. Heavy metal concentrations in waters of this stream are low and they further decrease downstream because the pollutants are diluted. Santrauka Masiškai gaminant produkciją, ją vartojant, vis opesnė tampa atliekų problema. Atliekų perdirbimą, utilizavimą iš dalies ribojantys ekonominiai, organizaciniai bei technologiniai veiksniai neišvengiamai skatina atliekas šalinti į sąvartynus. Dėl sąvartyno tūryje vykstančių fizinių, cheminių bei biologinių reakcijų susidaro sąvartyno dujos ir kenksmingas filtratas. Kadangi dėl nepakankamos kontrolės į sąvartynus kartu su buitinėmis, komunalinėmis atliekomis buvo šalinamos pramonės atliekos, susidarančiose dujose bei filtrate yra daug toksiškų junginių. Šią toksinių medžiagų bei junginių įvairovę dar labiau papildo į sąvartynus patenkančios pavojingos atliekos. Gruntinio ir paviršinio upelių vandens cheminę sudėtį ir kai kurių komponentų koncentraciją sąvartyno aplinkoje lemia filtrato ir pramoninių tirpalų įsisunkimo į gruntą mastas bei požeminių tėkmių pernašos. Straipsnyje nagrinėjama Lapių sąvartyno filtrate aptiktų sunkiųjų metalų įtaka aplinkai. Pramonės atliekos lėmė, kad filtrato pagrindiniai teršiantieji elementai yra Cu, Ni, Zn, Pb, Mn, Cr ir kt. jonai, šių metalų sulfidai ir kiti toksiniai junginiai. Pirmasis kaupimosi laukas yra labiau užterštas sunkiaisiais metalais nei trečiasis laukas. Visuose mėginiuose didžiausia yra geležies koncentracija. Ji net iki 200 kartų viršija HN 24:2003 leidžiamąją normą. Mažiausiai sunkiaisiais metalais užteršti šaltiniai (S11 ir S17 postai). Požeminis vanduo labiausiai užterštas G13s gręžinyje. Iš valymo įrenginių išvalytas filtratas yra išleidžiamas į upelį. Šio upelio vandenyje rastų sunkiųjų metalų koncentracijos yra nedidelės, o upeliui tekant tolyn teršalai atskiedžiami, ir metalų koncentracijos mažėja. Резюме Массовое производство продукции, пользование ею все более обостряют проблему отходов. Процессы переработки и утилизации отходов, в определенной степени ограничивающие экономические, организационные и технологические факторы, неизбежно способствуют интенсификации удаления отходов на свалки. На свалках отходов в результате протекающих физических, химических и биологических реакций образуются газы и токсичный фильтрат. Поскольку из-за недостаточного контроля на свалку вместе с бытовыми, коммунальными отходами удалялись и промышленные отходы, в составе образующихся газов и фильтрата имеется много токсичных соединений. Опасные отходы еще более увеличили спектр токсичных материалов и соединений в газах и фильтрате свалки. Химический состав и концентрация отдельных компонентов грунтовых и поверхностных вод в районе свалки определяют проникновение фильтрата и промышленных растворов в грунт и их перенос подземными течениями. В статье изучается влияние тяжелых металлов из фильтрата свалки в Лапес на состояние вод в районе свалки. Промышленные отходы способствовали появлению в фильтрате ионов основных загрязняющих элементов Cu, Ni, Zn, Pb, Mn, Cr, сульфидов этих металлов и других токсичных соединений. Первое поле накопления отходов в большей степени загрязнено тяжелыми металлами, чем третье поле. Во всех опытных образцах воды отмечена самая большая концентрация ионов железа, почти в 200 раз превышающая допустимую норму HN 24:2003. Наименьшее загрязнение тяжелыми металлами отмечено в подземной воде источников (посты S11 и S17). Грунтовые воды больше всего загрязнены в скважине G13s. Поверхностные воды ручьев, в которые проникает фильтрат, а также сливается очищенный фильтрат, содержат небольшие концентрации тяжелых металлов, которые разбавляются течением и уменьшаются.


Sign in / Sign up

Export Citation Format

Share Document